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Most familiar applications of Poynting’s theorem concern stationary circuits or circuit elements. Here,

we apply Poynting’s theorem to the homopolar generator, a conductor moving in a background

magnetic field. We show that the electrical power produced by the homopolar generator equals the

power lost from the deceleration of the rotating Faraday disk due to magnetic braking and review the

way that magnetic braking arises within Poynting’s theorem. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4895389]

I. INTRODUCTION

Poynting’s theorem1 for electric field E, magnetic flux
density B, and current density J follows from Maxwell’s
equations (Faraday’s and Ampère’s laws) and the vector
identity E � ðr � BÞ ¼ B � ðr � EÞ � r � ðE� BÞ.2,3 The
theorem states that the rate at which work is done on the
electrical charges within a volume is equal to the decrease in
energy stored in the electric and magnetic fields, minus the
energy that flowed out through the surface bounding the vol-
ume. In integral form, it can be written as
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where S is the surface with area element da bounding the
volume V, and l and � are, respectively, the permeability and
permittivity.

In Poynting’s words, Eq. (1) means that “we must no lon-
ger consider a current as something conveying energy along
the conductor. A current in a conductor is rather to be
regarded as consisting essentially of a convergence of elec-
tric and magnetic energy from the medium upon the conduc-
tor and its transformation there into other forms.”1 This can
be shown, for example, in the case of a wire segment of
length L and radius r, with voltage drop e carrying a steady
current I. With E ¼ ðe=LÞẑ and B ¼ ðlI=2prÞ/̂, integrating
the Poynting vector S¼E�B/l over the cylindrical area
2prL of the wire gives the power entering the wire’s surface.
The result is identical to that obtained from Ohm’s law, with
dissipated power P¼ eI.1,3 In addition to this example,
Poynting’s theorem has been applied to a number of station-
ary circuits of simple geometry.4–8

Can Poynting’s theorem be applied to circuits in which a
conductor is moving in the presence of a constant back-
ground magnetic field? The theorem should account for such
cases, but elementary electromagnetism texts do not typi-
cally consider them. To examine a concrete and well-known
system, we apply Poynting’s theorem to the homopolar gen-
erator. We first demonstrate that the electrical power pro-
duced by the homopolar generator equals the power lost

from the deceleration of the rotating Faraday disk due to
magnetic braking. We then review how this magnetic brak-
ing arises within Poynting’s theorem.

II. POWER DISSIPATION IN THE HOMOPOLAR

GENERATOR

The homopolar generator, or Faraday disk, produces an
electromotance (emf) by rotating a conducting disk in a
constant uniform magnetic field.9–11 The disk connects to an
ammeter via brushes, one of which makes electrical contact
with the rim of the disk and the other with the conducting
axle of the disk. Consider the disk shown in Fig. 1, which
has radius b and thickness h, with an axle of radius a aligned
along the z-axis. The disk rotates with angular frequency x
in the laboratory frame, and the material of the disk has

Fig. 1. The Faraday disk, or homopolar generator. An ammeter measures

current flowing from point O to point Q.
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conductivity r. The disk rotates in a constant magnetic field
of flux density B ¼ Bẑ.

We first calculate the power dissipation in the disk, work-
ing in the lab frame. Divide the disk into concentric cylindri-
cal shells of radial thickness dr and circumferential area
A¼ 2prh. The Lorentz force generates an emf across a shell
given by

de ¼ ðv� BÞ � dr ¼ xrB dr; (2)

where we have used v ¼ xr/̂. The emf across the entire
disk is then

e ¼
ðb

a

de ¼ 1

2
xB b2 � a2ð Þ: (3)

The emf drives a current that runs from axle to rim, then
through the ammeter back to the axle. Since only the disk is
rotating in the lab frame, the only emf generated in the sys-
tem is within the disk. The resistance of a single cylindrical
shell is

dR ¼ ðrAÞ�1dr; (4)

so the resistance of the entire disk is then

R ¼ 1

r

ðb

a

dr

2prh
¼ 1

2prh
ln b=að Þ: (5)

The Faraday disk is known as an intrinsically high-current
low-voltage device,12 and Eq. (5) can help us understand
why. An application of Ohm’s law gives I=e ¼ R�1

¼ 2prh=lnðb=aÞ. Consider a disk made of a typical conduc-
tor, say aluminum, for which r¼ 3.8� 107 S/m.13 If I were 1
A, then even if b¼ 104a, we could only have e¼ 1 volt if h
were 4� 10�8 m. Because e in Eq. (3) is fixed for a given B,
a, and b, the resistance of the remainder of the circuit only
decreases I further. High voltages can be achieved by homo-
polar generators in astrophysical contexts where the length
scales can be � 103 km or more. Within our Solar System,
however, astrophysical homopolar generators appear to pro-
vide only minor electrical heating of planetary satellites.14–18

The total power P dissipated in the disk can be determined
by integrating over the increments of power dP dissipated in
each concentric shell. Using Eqs. (2) and (4), we have

dP ¼ � deð Þ2

dR
¼ �2prB2x2hr3dr; (6)

where the negative sign indicates that power is being lost.
Then

P ¼
ðb

a

dP ¼ �p
2

rB2x2h b4 � a4ð Þ: (7)

III. MAGNETIC BRAKING AND ENERGY

CONSERVATION

The current density J in the disk interacts with B to decel-
erate the disk by magnetic braking. The magnetic braking
force per unit volume is F¼ J�B.12,19 The disk obeys
Ohm’s law for moving conductors

J ¼ rðEþ v� BÞ; (8)

so the braking force becomes

F ¼ J� B ¼ r½E� Bþ ðv� BÞ � B�: (9)

For v ¼ xr/̂ ¼ xrð�sin /x̂ þ cos /ŷÞ; B ¼ Bẑ, and with
no external electric field E, we find

F ¼ �rxrB2/̂: (10)

The work done per unit volume is then dW¼F � dl¼F � v
dt, so the rate at which work is done decelerating the disk is
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rB2x2h b4 � a4ð Þ; (11)

which is identical to Eq. (7). Equation (11) makes clear that
the power dissipated by the current driven to flow in the
homopolar disk comes directly from the disk’s kinetic
energy of rotation. The magnetic field acts, so to speak, to
convey the necessary energy from the rotation of the disk to
the electrical circuit, but the magnetic field energy is
unchanged.

In Eqs. (9) and (10), we treated B as the constant external
field, ignoring secondary magnetic fields that must result
from the generation of the current J. Lorrain et al.19 have
examined the secondary magnetic fields Bdisk and Baxle that
arise as a result of the current flowing in the disk and
axle, respectively. Both are azimuthal, so that
v�Bdisk¼ v�Baxle¼ 0. We note that neither component
contributes to magnetic braking: J�Bdisk is in the axial
direction so it does not slow the rotating disk; and J�Baxle

is in the radial direction so it does not slow the rotating axle.

IV. POYNTING’S THEOREM AND MAGNETIC

BRAKING

To apply Poynting’s theorem to the homopolar generator,
it remains to show that the magnetic braking force (per unit
volume) J�B is a consequence of Poynting’s theorem, in
which case the theorem would indeed show that the power
production derives from the electromagnetic fields via mag-
netic braking. Davidson20 gives a straightforward demonstra-
tion. One simply uses Ohm’s law [Eq. (8)] to rewrite the first
term in Poynting’s theorem [Eq. (1)] as

ð
V

E � J dV ¼ 1

r

ð
V

J2 dV þ
ð

V

J� Bð Þ � v dV; (12)

where we have used –(v�B) � J¼ (J�B) � v. In our case,
E¼ 0 so in Eq. (12) the Joule heating

Ð
VðJ2=rÞ dV in the

disk is equal to the energy lost from the disk by magnetic
braking.

Other authors obtain magnetic braking from the Poynting
theorem via the Lorentz transformations of the electromag-
netic fields.21–23 Define two frames: K is the frame in which
a conductor is moving at velocity v, and K0 is the frame
moving at v along with the conductor. How does the quantity
E � J transform between the two frames? For v2� c2, where
c is the speed of light, we have

E0 ¼ Eþ v� B (13)
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and

J0 ¼ J; (14)

so

E0 � J0 ¼ E � J� v � ðJ� BÞ: (15)

Equation (14) is more complicated if J has a component par-
allel to B, but for the Faraday disk that is not the case. Of
course, the frame of a rotating disk is an accelerating frame
and Maxwell’s equations must be modified as a result, but
these modifications are of order (v/c)2 so we may ignore
them here.24 In K0 Ohm’s law is just J0 ¼ rE0, so E0 � J0
¼ J02=r ¼ J2=r and, because E¼ 0 in our case, Eq. (15)
gives J2/r¼ –(J�B) � v. Integration over the relevant vol-
ume once again shows that the Joule heating equals the
energy lost from the disk by magnetic braking.

V. LINEAR ANALOG

For completeness, we now show that the same approach
yields consistent results for the linear analog to the homopo-
lar generator. Consider an infinitely long (along the x-axis)
conducting rectangular bar moving with velocity v ¼ vx̂
through a field B perpendicular to the bar and direction of
motion (Fig. 2).25 The bar has finite width l and height h in
the y and z directions, respectively. If the bar were instead fi-
nite along the x-axis and moving along connected stationary
rails, it would be a so-called rail gun.26–29

The emf across an increment dl of the bar in the y-direc-
tion is de¼ vBdl. We calculate power dissipated per volume
dV¼ hwdl, where w is some specified distance in the x-direc-
tion. Equation (4) gives dR¼ dl/rwh, so by Eq. (6), the
power dissipated per volume is

� deð Þ2

dR dV
¼ �rv2B2: (16)

This is to be compared to the dissipated power calculated
from magnetic braking. Using Ohm’s law and following Eq.
(9), the corresponding magnetic braking force per volume is

F ¼ �rvB2x̂; (17)

so the work done per unit volume is

F � v ¼ �rv2B2; (18)

which is identical to Eq. (16).

VI. CONCLUSION

Poynting’s theorem has been successfully applied to the
case of the homopolar generator (as well as its linear analog),
in which a current flows in a circuit due to the motion of a
conductor through a uniform background magnetic field. The
power generated derives from the magnetic braking deceler-
ation of the rotating Faraday disk. This magnetic braking is a
natural consequence of Poynting’s theorem.
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