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Summary: Neptune’s moon Triton is spiralling in towards the planet due
to tides raised on both Neptune and Triton. Dissipation from tides on Triton
will arise when either its orbital eccentricity or spin—axis obliquity is non—
zero. Triton’s current obliquity may lie close to either 0° (state 1) or 100°
(state 2), corresponding to the two stable Cassini extrema of its rotational
Hamiltonian. The Kaula tidal formalism is used to model the past and future
evolution of the system in both states. For nominal parameters (Qn = 10%,
Qr = 10?) in state 1, Triton will reach Neptune’s Roche limit in ~3.6 Gyr
with a decrease in its orbital inclination from the present 159° to ~ 145°.
In state 2, substantial heating due to obliquity tides leads to significantly
different orbital evolution. In this case, Triton’s inclination will increase to
an end-point of 180° in 107 ~ 108 yr, at which time the satellite will make
a transition to state 1. Triton will then evolve in to Neptune’s Roche limit
in ~1.4 Gyr. Extrapolation into the past suggests that Triton’s orbit has
always been retrograde, with an inclination of at least ~ 125°. For Qr =
100, any initial eccentricity would have damped to the present upper limit of
5x 10~% in ~ 200 Myr. If Triton was captured at an earlier epoch, then any
measurable current eccentricity is most probably due to cometary impacts,
rather than representing a tidal “relic”.
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1. The Neptune-Triton system

Triton orbits Neptune at an inclination ¢ = 159 £ 1.5° with semimajor
axis a=14.1 Ry (Harris, 1984), where Ry = 2.52 x 10* km is Neptune’s
stratospheric equatorial radius (French et al., 1985, and refs. therein). Nep-
tune has only one other known satellite, Nereid, which is relatively small (ra-
dius 525 km for a geometric albedo of 0.04) and in an inclined (27.5°), highly
eccentric (0.756), and distant (~ 220 Ry) orbit (Cruikshank and Brown,
1986). Nereid’s gravitational effects on the rest of the system are negligible.
The present Neptune—Triton system is thus remarkably uncomplicated from
a dynamical point of view.

Many investigators have speculated on the reason for Triton’s retrograde
orbit. Lyttleton (1936) suggested that both Pluto and Triton originated as
prograde satellites of Neptune, only to experience a catastrophic gravitational
interaction. McCord (1966) showed that tidal evolution could have brought
Triton inward from a near—parabolic orbit, lending plausibility to a cap-
ture origin for the satellite. Harrington and Van Flandern (1979) suggested
Triton’s peculiar orbit and Pluto’s supposed “escape” were caused by an en-
counter with a massive “rogue”, body, a conclusion contested by Farinella
et al. (1980). Finally, McKinnon (1984) combined momentum and energy
constraints with an improved knowledge of Pluto’s mass to show that all
Pluto-Triton interaction scenarios for the origin of Triton’s retrograde orbit
are untenable, leaving the capture hypothesis as the most likely possibility.

To assess this hypothesis, and to predict the future of the Neptune—
Triton system, requires modeling the evolution of Triton’s orbit. McCord
(1966), following MacDonald’s (1964) tidal formalism, conducted the first
such investigation and concluded that Triton will reach Neptune’s Roche limit
within 107-108 yr. However, this result depended on a specific dissipation
factor for Neptune of Qy=10?-103, now considered to be improbably small.
(Peale (1988) has argued that the Q of Uranus must be at least 4.6 x 103,
with values of ~ 10% entirely possible; the Q’s of Jupiter and Saturn are at
least 10° and perhaps as great as 10° (Goldreich and Soter, 1966).)

Szeto (1981) argued that, despite Triton’s low eccentricity (e< 5 x 1074
Harris, 1984), the orbital effects of tides raised on Triton (“Triton tides”)
dominate those due to tides on Neptune (“Neptune tides”) by a factor ~
10°. His analysis, however, neglected to treat correctly the effect of Triton’s
orbital inclination on the satellite tides. A proper treatment first requires a
determination of Triton’s as yet unobserved spin-axis obliquity. This may
be calculated from the theory of Cassini states (Sec. 3), but a prerequisite
to both these and the subsequent tidal evolution calculations is the choice of
a self-consistent set of physical parameters for the Neptune-Triton system.

2. Choice of a self-consistent parameter set

The Kaula perturbation equations (Kaula, 1964, 1966; Burns, 1986) used
to calculate orbital evolution in Secs. 6 and 7 require knowledge of a number
of interdependent physical parameters. Three of these, the initial values for
the evolving orbital elements (semimajor axis a, inclination 7, and eccentricity
e) are known, or at least bounded (see Sec. 1). We also require values for the
two bodies’ masses, My and mr, radii Ry and ry, Love numbers ky and k7,
and specific dissipation factors Qn and Qr. Of these quantities, only My =
1.02 x 10%° g (Harris, 1984) and Ry are well established. We now attempt
to determine a “best” choice for the remaining values.

Alden (1943) estimated my from observations of Neptune’s barycentric
wobble. His measurements yielded mp /My = (1.28+0.23) x 10~3. However,
this value is difficult to reconcile with more recent radiometric (Lebofsky et
al., 1982; Morrison et al, 1982) or speckle interferometric (Bonneau and Foy,
1986) measurements of Triton’s radius. We choose Lebofsky et al.’s (1982)
radius estimate, rp=1750 £ 250 km, a value consistent with that of Morrison
et al. (1982), although above the upper bound of Bonneau and Foy’s (1986)
speckle result. If Alden’s (1943) mass ratio is correct, this radius requires
Triton’s density, pr, to be 5.9 g cm~3, an unreasonable value. Instead,

we arbitrarily set pr=2.0 g cm~3, which, with our adopted radius, gives
my/My=4.4x10"*%, about 1/3 of Alden’s value.

Triton’s second-order Love number, kr = 3/(2 + 19u/gprrr) = 0.12,
where g is Triton’s surface gravity and we adopt the rigidity of water ice,
p=4x10'" dyne cm~2 (Proctor, 1966). Harris (1984) calculates Neptune’s
second—order Love number ky using a moment of inertia factor, yy, cal-
culated from an interior model. However, the resulting value ky=0.2 is

in fact inconsistent with his own value for the second-order coefficient, in
the harmonic expansion of the gravitational potential J,, given the relation

ky = 3J2/q, where q=w} R% /GMpy and wy is Neptune’s rotational angular
velocity. In this paper we adopt the view that the values of physical pa-
rameters used in our calculations, though unavoidably somewhat uncertain,
must be internally consistent. We therefore follow Dermott’s (1984) iterative
approach towards finding a set of “best”, mutually consistent values.

The procedure is as follows. We choose an observational value for either
the oblateness, f, or rotation period, Py . Suppose for clarity that we choose
Py = 18.2 hr (Harris, 1984, and refs. therein). We then guess an initial
“seed” value for 7y, and calculate Neptune’s obliquity ey, from the equa-
tion siney = (mra®nsini)/(yny My R} wn), where n is Triton’s orbital mean
motion and wy = 27/Py. This equation simply states that the pole of the in-
variable plane is given by the orientation of the total angular momentum vec-
tor of the Neptune—Triton system, so that the horizontal component (sin €y )
of Neptune’s rotational angular momentum must be equal and opposite to the
horizontal component (sin ¢) of Triton’s orbital angular momentum, where
en and 7 are both measured relative to the invariable plane. This allows us to
calculate Neptune’s J, via J, = (4/3)(a/Rn)*(Tr sini)/[Tp sin2(i + en)],
where Tp and Ty = 2w/n are Triton’s orbital precession period and or-
bital period, respectively. Harris (1984) gives Tp/sin i = 1738 yr. This
estimate of J, allows us to calculate ky and f, via the equations ky =
3J2/q and 2f = 3J; + q. Finally, f may be substituted into the Darwin—
Radau relation, vy =~ 2/3 — (4/15)(5¢/2f — 1)1/2, to yield a new value for
y~ - In practice, iterations of these equations converge, independent of the
initial choice of 4y, to better accuracy than justified by observational uncer-
tainties in fewer than five cycles. An analogous procedure can be followed if
f =0.021 (Lellouch et al. 1986; Hubbard et al. 1987) is taken as the given
observational quantity. Since it is unclear at present whether observations
of Py or f are more reliable, our final adopted values are determined by
averaging the results of the two iterations. We find Py=17.0 hr, f = 0.018,
en=0.86°, J, = 3.8 x 10~3, ky = 0.46, and yx = 0.25. Of these values, ey,
J2, and v change by $10% with the choice of either Py or f as the inde-
pendent variable in the iteration, whereas ky increases from 0.40 to 0.53 as
Py ranges from 15.8 hr (for f = 0.021) to 18.2 hr. Increasing mp to Alden’s
value increases ey to ~ 2.5°, but has little effect on other parameters.
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It is true that the procedure outlined above may also suffer from defects.
The value for Py (and therefore g) is via lightcurve variations in CHy absorp-
tion bands (Harris, 1984), or motions of visible cloud features (Hammel and
Buie, 1988), while f is determined by stellar occultations (Hubbard et al.,
1987). These parameters are thus appropriate to levels in Neptune’s upper
atmosphere. The equations for ky and yn, however, depend on the rotation
rate in the deep interior. We are thus implicitly assuming that the interior
and atmospheric periods are the same, or at least very similar. Bearing in
mind the facts that Uranus’ atmospheric rotation period was found from
Voyager observations to vary substantially with latitude, and to differ by
over an hour from the magnetic field (presumably interior) rotation period
(Stone and Miner, 1986), we recognize that a definitive set of parameters
must await the Voyager/Neptune encounter in August 1989.

Finally, values must be chosen for the dissipation factors, Qny and Qr.
Lower bounds on Q for Jupiter, Saturn and Uranus can be derived from the
positions of their innermost satellites, on the assumption that these satellites
began their outward orbital evolution from their primary’s Roche limit 4.6
Gyr ago (Goldreich and Soter, 1966). Upper bounds on Q for Jupiter and
Saturn are implied by requiring a tidal origin for their satellite commensura-
bilities. Neither approach is possible for Neptune, because Triton is orbiting
retrograde and thus evolving inwards, and of course the system has no com-
mensurabilities. Values of Q estimated via these techniques for the other
giant planets range from ~ 10* to 10% (Burns, 1986). We choose Qn = 10*
as a plausible minimum value. Estimates of Q for satellites composed of
rock/ice mixtures typically range from 10 to 400 (Squyres et al., 1985). We
choose Qr = 100. Timescales for orbital evolution scale linearly with Q (see
Secs. 6 and 7), so the effects of different choices are easily deduced.

3. Triton’s possible Cassini obliquities

Tides raised in a synchronously rotating satellite do not result in any
significant changes in the orbital angular momentum, due to the very small
angular momentum reservoir in the satellite’s spin. Triton’s spin angular
momentum Lpin ~ mrREn ~ 107°Lory, where Lory = mra’n is Triton’s
orbital angular momentum. We can thus safely neglect changes in Loy due
to Triton tides. If the satellite’s orbit is eccentric, however, then the variation
of tide height with orbital distance, coupled with an oscillation in the bulge
orientation due to variations in the instantaneous orbital angular velocity
can lead to substantial energy dissipation, which must ultimately deplete
the orbital energy (cf. Yoder, 1982). A similar dissipation of tidal energy
will oceur for a circular, inclined orbit, if the spin axis of the satellite is
not perpendicular to the plane of the orbit. In most cases, the satellite’s
obliquity is small, and the resulting dissipation is negligible (cf. Yoder and
Peale, 1981; Szeto 1983), but Triton may be an exception to this rule.

Triton’s obliquity must satisfy Cassini’s (1693) third law, which in its
modern form (Colombo, 1966) states that a satellite’s spin axis and orbit
normal remain coplanar with the normal to the invariable plane during their
mutual precessional motion. Such coprecession is possible only for values of
Triton’s obliquity 6 (measured from the orbit normal) that satisfy:

(3/2)7(8)sinfcost + (3/8)3(6)sinf(1 — cosb) + Qsin(§ —4) =0, (1)

(Peale, 1969), where Q = Tr/Tp and vy = (C — A)/C and § = (B — 4)/C
are Triton’s moment of inertia differences. For a synchronously rotating
satellite with nonzero obliquity, the hydrostatic moment differences are given
by (Jankowski et al., 1989):

7(6) = (5¢/32)(5 + 6cosf + 21cos?) and B(6) = (15¢/16)(1 + cosb)?, (2)

where ( = (My/mr)(rr/a)®. Egs.(1) and (2) may be solved for § by suc-
cessive approximation. In general, two or four solutions exist, depending on
the ratios 7/Q and B/Q. These solutions are called Cassini states. For the
present day Triton with a=14.1 Ry, i=159°, and My, my, and r7 as above,
there are two possible stable states: state 1 with § = —0.26°, and state 2
with 8 = 100°. We label these states S1 and S2, respectively. Given hydro-
static moments, pp is the only poorly-constrained parameter appearing in
eqs.(1) and (2); as pr varies from 1 to 4 g cm~3, 6 in S1 or S2 changes by less
than ~0.5 and 5 degrees, respectively, resulting in negligible changes in tidal
heating (Sec. 5). Triton’s unusually large inclination leads to a substantial
probability that the satellite may be found in S2, although most other (low
inclination) satellites are known to occupy S1 (Jankowski et al., 1989).

4. Tides on Neptune and Triton

Orbital evolution of Triton will occur due to both Neptune and Triton
tides. We model the effects of Neptune tides (i.e., tides raised on Neptune
by Triton) by Kaula’s perturbation theory (Kaula, 1964; 1966), in which the
secular perturbations of Triton’s motion are given by sums over individual
terms arising from a Fourier-decomposition of Triton’s tidal potential. Thus,
the time derivative of the semimajor axis is given by

a=2 Z Kim(a)[Fimp (i + CN)]Z[GIPq(e)]Z(I — 2p + g)sin€impq, (3a)
Impgq
Kim(a) = kina(mr /My )(Rn /a)"*1(2 = $mo)(I = m)!/(I+ m)!,  (3b)

where the sum is taken over 1 =2,3,.., 0 <m<,0<p<l,and —00 < ¢ <
+00. In eq.(3a), the Fimp(i + €n) and Gipq(e) are polynomials in sin(i+e€n)

and power series in e, respectively, which are tabulated for values through
I = 4 by Kaula (1966). i and ey are measured relative to the invariable
plane, so that (i + en) is the inclination of Triton’s orbit relative to the
plane of Neptune’s equator. In eq.(3b), k; is the I**~order Love number; we
have designated ks above by kn. €mp, is the phase lag (due to dissipation)
associated with the tidal term [Impq]. We shall assume the phase lags to
be small, and equal for all tidal components, so that sin €impq = €impg =
Qn'signfmwy — (I — 2p + ¢)n]. This amounts to assuming a frequency-
independent Q. Expressions similar to eq.(3a) hold for é and di/dt. This
formalism has recently been summarized and discussed by Burns (1986).

One might hope that we could also apply the same formalism to model
Triton tides. Indeed, it is frequently asserted in the literature that such satel-
lite tidal effects may be calculated by interchanging satellite and planetary
parameters in eqs.(3), and multiplying by the mass ratio My /mz (MacDon-
ald 1964; Kaula 1964; Burns 1986). This simple prescription fails, how-
ever, for several reasons (Yoder 1982; Szeto 1983). First, in the case where
the inclination is non-zero, the argument i 4+ ey of the Fi,,, functions must
be replaced by 6, the satellite’s obliquity. Second, the satellite’s equatorial
plane, unlike the invariable plane, is non—inertial, so that corrections must
be introduced into the equation for di/dt due to satellite tides, incorporat-
ing appropriate averaging over the satellite’s precessional cycle. Third, and
most importantly, for a synchronous satellite such as Triton is certain to be
(Jankowski et al., 1989), there are additional non-tidal torques due to the
triaxial figure of the satellite. In effect, the Kaula expressions only take into
account effects due to the satellite’s elastic tidal bulge and do not include
effects due to the satellite’s permanent figure distortion. The net effect of
these “permanent” torques is to cancel any non-zero tidal torque due to a
finite orbital eccentricity (or inclination) (Yoder 1982). As indicated in Sec.
3 above, there can be no significant transfer of angular momentum into or
out of the orbital motion associated with satellite tides, but the Kaula ex-
pressions alone can be shown not to conserve orbital angular momentum for
a synchronous satellite.

To avoid these difficulties, we describe the action of Triton tides by
appealing to angular momentum and energy considerations. Although Triton
tides result in negligible changes in the orbital angular momentum, L,,p, this
quantity itself is not constant because of Jo—induced precession. Precession
of Triton’s orbit will not, however, alter the component perpendicular to the
invariable plane, L? , = Lorscosi. Thus L7, may be treated for practical
purposes as though it were strictly conserved, although solar torques on
Triton will induce even the invariable plane normal to precess on a time scale
of 108 years. Setting L?,., = \/GMpna(l — e2)mrcosi equal to a constant and
differentiating, we obtain the relation:

a/a=2eé/(1— €?)+2 tan i (di/dt) = 2aEor,/GMymr, 4

where we have used Eory = —GmpMpy/2a. Thus we can relate @, é, and
di/dt due to satellite tides to the tidal dissipation of energy in Triton, since

E,r5 must equal the energy lost by tidal heating: Eorp = —FEyidal.
5. Tidal heating of Triton

In general, tidal heating is due to both eccentricity and obliquity effects.
A tidal heating model taking both of these into account has been developed
by Peale and Cassen (1978). For an incompressible homogeneous satellite,
and keeping only the { = 2 terms in the Kaula expansion, they find

Buaa = K@) (2 = bom) 5 g OF G Xompss 9)
mpgq

where Kr(a) = kp(1 + kr)"'GMina=(rr/a)®, Xomp, = 2 -2+ ¢~
m)sin(€zmpq), and the assumed frequency-independent phase lags are given
by sin(ezmpq) = Q7'sign[(2 — 2p + ¢ — m) + (2 — 2p — m)arr/n]. (@r is the
time derivative of the argument of pericenter of Triton’s orbit.) For small
eccentricity and obliquity, eq.(5) may be approximated by

Etigal =~ (3/2)Kr(a)Q7(7€® + sin0), (6a)
while for small e and 8 ~ 90°,
EBrigar = (15/8) K1 (a)Q7" (6%)

For Triton, e is currently < 5 x 10~* and, since both Neptune and Triton
tides will only act to reduce e even further, e ~ 0 should remain an excellent
approximation throughout all future orbital evolution. In this case, eq.(4)
may be rewritten as .

tani di = da/2a, with &= —(2a*/GMymr)Evida )

where Eyigq1 is given by eq.(6a) or (6b), depending on whether Triton is in
S1 or S2, respectively. Of course, Triton’s past orbit may well have been
eccentric; this case will be discussed further in Sec. 7.

The tidal heating implied by egs.(6) has been discussed for a vari-
ety of Triton radii and compositions by Jankowski et al. (1989). Tidal

heating in Cassini state 1 (8 ~ 0°) is several orders of magnitude smaller
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than radiogenic heating. However, heating in S2 (¢ = 100°) is substan-
tial; eq.(6b) gives Eyga = 1.3 x 10%'erg sec™!, a result which scales as
(pr/2.0 g cm=3)?(r7 /1750 km)7(14.1Rn/a)'%/%(100/Q7). Here we take kr =
0.12(pr /2.0 g em=3)?(r7 /1750 km)?, an approximation good to ~10%.

In fact, the heating rate of Triton in S2 for the parameter values adopted
in this paper is inconsistent with infrared observations of Triton (Jankowski
et al., 1989), by a factor ~ 6. This argues either that Triton is in state S1
rather than S2, or that one or more of the parameters (e.g., Q7) used in our
calculation is incorrect. In particular, the strong dependence of Eyigq; on 17
means that a Triton smaller by several hundred kilometers in radius may, in
fact, occupy S2 without violating any present observational data.

6. The future of Triton

To numerically calculate orbital evolution in the Neptune-Triton system,
we integrate the changes in Triton’s orbital elements due to Neptune tides
(eqs.(3)) for a, and the analogous equations for é and di/dt; see, e.g., Burns,
1986) and sum these with those due to Triton tides, from eqs.(6) and (7). The
size of the timestep used in the integration is varied so that a never changes
by more than 0.1% in any iteration. When summing over Impq in egs.(3) and
analogous equations, only terms with ! = 2 are kept. This is an acceptable
approximation, as Ky (a) oc (Ry/a)?+! (see eq.(3b)), so that the I = 3 terms
are each a factor (14.1)2 ~200 smaller than the corresponding [ = 2 term.
Of course, this approximation becomes worse as Triton evolves in towards
Neptune, but in practice orbital evolution occurs so quickly within ~ 10Ry
that little error is introduced into evolutionary timescales by excluding the
higher order terms. This was verified explicitly by initial numerical runs in
which all terms through I = 3 were included; these terms were later dropped
to minimize computing time. For reasons outlined in Sec. 7, we restrict
our calculations to the small-e regime, and have accordingly truncated the
Gipy expansion to |g| < 2. Higher order terms are of order €3, or smaller.
At each iteration, new values are also computed for e; and Py=2r/wn by
angular momentum conservation, and for # by iteration of egs.(1) and (2).
The results of our integrations are shown in Figs. 1 and 2.

We consider first the evolution of Triton’s orbit forwards in time, assum-
ing Triton lies in state S1 (the solid line in Fig. 1). In this case, the evolution
of Triton’s semimajor axis is due almost entirely to Neptune tides, and in fact
is dominated by a single semi-diurnal term. This can be shown explicitly by
considering eq.(3a). For small e, Gjp, o €4l (Burns, 1986), so only the terms
[lmpq]=[2m00], [2m10], and [2m20] can contribute substantially to the sum.
(Our integration takes e = 5 x 10~* as the current value for the eccentricity.)
The multiplicative factor (I—2p+q) in eq.(3a) renders the contribution from
the [2m10] term zero. Additionally, each Gip, is multiplied by the sum of
appropriate Fy,,, terms; examination of these for (i+e¢n) ~ 160° reveals that
only the term Fa5; makes a significant contribution. Thus, orbital evolution
in S1 due to Neptune tides is due almost entirely to the [2220] term. Egs.(3)
can be written out explicitly for this term, and the result integrated to yield
a timescale for orbital evolution between an initial distance ap and a final
distance a due to the action of Neptune tides alone:

™~ % (2/39)(ag”? — a'¥/2)(Mn /mr)(Q@n / Rikn)(GMN)™ 2. (8)

Similarly, from egs.(4) and (6a), we can derive a timescale 77 for semi-
major axis evolution in S1 due to Triton tides. Dividing 7y by 77 gives

™/ % (kr/kn)(QNn/QT)(pn/pr) (RN [rr)(Te? +sin%0;),  (9)

where py = My /(4/3)7R3 is Neptune’s mean density and we have added
a subscript to # as a reminder that this expression refers only to state S1,
i.e., small Triton obliquity. For our nominal parameter values, and with
e=5x10"%and 6; = —0.26°, we find that 7 /7r = 4.9%10~3, so that orbital
evolution timescales in S1 are a factor ~200 longer for Triton tides than for
Neptune tides. To this accuracy, the effect of Triton tides on semi-major axis
evolution in S1 is indeed negligible, unless Neptune’s Q exceeds 10°. Note
that, with the present eccentricity, the major contribution to Triton’s tidal
dissipation arises from the small state 1 obliquity, so our setting of ¢ = 0
does not appreciably affect our results. Eq.(8) may be rewritten as

N ~ 3.6 (2.0 g cm~3/pr)(1750 km/rp)3(Qn /10%) Gyr, (10)

where we display the dependence of 7y on those parameters most likely to
change after the Voyager/Neptune encounter. 7y can then be appropriately
rescaled. This approximate analytic result is in close agreement with the
numerical integration shown in Fig. 1, which includes all terms in the full
expansion, as well as Triton tides.

An analogous procedure can be used to study the future evolution of Tri-
ton’s inclination in state S1. The effect of Triton tides is calculated in this
case by setting é=0in eq.(4), to yield eq.(7). Neptune tides again dominate,
but by only a factor of ~14 with our nominal parameters. There are three
large Neptune tidal terms of comparable magnitude : the semi-diurnal tide
[2220], and two diurnal terms [2110] and [2120]. The diurnal terms are ap-
proximately equal, but opposite in sign, leaving the semi-diurnal term as the,
principal contributor. In consequence, the combined effect is not sensitive to
our assumption of a frequency-independent Q. (Indeed, a similar inspection

of the signs and magnitudes of the leading terms in a (egs.(3)), ¢, and Evigal

(eq.(5)) reveals them to be insensitive to this assumption as well.) Summing
these three terms, we obtain

L25

(di/dt)n ~ —(3/4)sin i(kn /Qn)(mr /My )(Ry/a)’n (1)

Combining this result with the dominant term in @ and integrating gives:
sin i ~ (ao/a)'*sin iy, (12)

which predicts a reduction in inclination from 159° to ~ 146° as a decreases
to 2.5 Ry. The numerical integration in Fig. 2 shows a somewhat smaller
reduction in ¢, due to the effects of Triton tides.

Satellite tides act to drive sin ¢ towards 0, in the case of Triton driving the
inclination toward 180° (and Triton’s obliquity toward 0°), in the direction
opposite to Neptune tides. (For a prograde satellite, both planet and satellite
tides drive ¢ towards 0.) This may be understood physically by noting that
energy dissipation in the satellite must decrease the semimajor axis, thus
decreasing the total orbital angular momentum (for ¢ = 0). Since the z
component of angular momentum remains unchanged, the orbital plane must
move towards the invariable plane. Satellite-tide driven orbital evolution then
ceases when the inclination reaches either 0° or 180°, in which situation the’
Cassini obliquity goes to zero and energy dissipation due to obliquity tides
ceases. This scenario is exactly analogous to the damping of eccentricity by
radial tides. For small obliquities, we find from egs. (6) and (7)

(di/dt)T = —(3/2)(sin2 01/ tan i)(kT/QT)(MN/mT)(rT/a)sn. (13)

Whether Neptune or Triton tides dominate di/dt is thus of qualitative,
as well as quantitative, significance. Since Neptune tides dominate this evo-
lution by only a small margin, it is possible that modest changes in parameter
values (e.g. Qn, Qr, or rr) from those uséd here could reverse the sense of
inclination evolution shown in Fig. 2. Even with our nominal parameters,
Triton tides would have dominated di/dt if Triton’s semi-major axis ever
exceeded ~ 50 Ry, where the Cassini obliquity 6; = 1.0°.

Let us now consider the consequences for orbital evolution if Triton is
in Cassini state 2. We follow a procedure analogous to that used to de-
rive egs.(8) and (9), using eq.(6b) rather than (6a) to evaluate Ey;ge. The
timescale for orbital evolution of a due to Triton tides will be shortened by
a factor ~ (4/5)sin”0; (neglecting the small e? term in eq. (6a)), which for
6; = —0.26° is ~ 1.6 x 10~°. Triton tides will thus dominate the evolution
of a in S2 by a factor ~ 300. The resulting timescale is given by

77 % (8/195)(a5™” — a¥/2)(mr /My )(Qr /rikr)(GMy)~ V2. (14)
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Fig. 1. The evolution of Triton’s semimajor axis as a function of time,
for Cassini states 1 (solid curve) and 2 (dotted curve), for Q7 = 10? and
Qr = 103, respectively. For both cases, Qy = 10%. Past orbital evolution

is for the case ¢ = 0. The case e # 0 is discussed in Sec. 7 of the text.
The current system is indicated by the filled circle, at 14.1 Ry. The abrupt
change of slope in the dotted curve at 9 x 107 yr corresponds to the transition.
to state 1 which occurs at 7 = 180° (see text).
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Fig. 2. The evolution of Triton’s inclination as a function of semimajor

axis, with e = 0, for Cassini states 1 (solid line; @7 = 102) and 2 (dotted

line; @r = 10%). Qn = 10%. The current system is indicated by the filled

circle, at @ = 14.1Ry and i = 159°. In state 2, i reaches its maximum value

of 180° at @ = 12.3R, after which a transition to state 1 occurs.
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As might be expected, in S2 Triton tides also dominate the evolution in
inclination, in this case by a factor ~ 4000. From eq.(7), for small e:

a/ap = (cos ig/cos i)?, (15)

and the inclination is rapidly driven to 180°, as described above. For Triton,
satellite tides in S2 will have driven ¢ to 180° when a = 12.3 Ry. Eq.(14)
shows that, for Qr=100, the time required for a to decrease to 12.3 Ry in
S2 is only 8.6x 105 yr.

When Triton’s inclination reaches 180° in S2, an apparently paradoxical
situation arises: Eyigqr remains finite, since 6, ~ 90°, but no more energy can
be removed from the orbit without reducing L ,. Formally, di/d¢ diverges at
this point. This puzzle is resolved by a consideration of the stability of state
S2 when ¢ = 180°. Libration about this state is possible only within a narrow
zone bounded by the “critical parabola” (cf. Peale, 1969, or Jankowski et al.,
1989). As 7 approaches 0° or 180°, the critical parabola shrinks towards zero
width, restricting the zone of stability for state 2. Physically, this means S2
will become unstable to small external perturbations (e.g., impacts), which
will then drive Triton out of S2. The obliquity will then rapidly damp (on
a tidal despinning timescale of ~ 10* yrs) to S1. Thereafter, Triton will
remain in S1, evolving inwards according to eq.(8), with ¢ remaining equal
to 180°. From eq.(8), we estimate that Triton will reach Neptune’s Roche
limit following this scenario in ~ 3.6 (12.3/14.1)13/2 Gyr = 1.4 Gyr.

As discussed in Sec. 5, the rate of tidal heating required by Qr=100,
given the other parameters chosen here, lies above observational limits. Thus,
if Triton is in S2, the ~ 107 yr timescale derived above for Triton’s orbit to
reach 7 = 180° is probably unrealistically short. To simulate more plausible
parameters, we have in fact performed our numerical integrations for S2 with
Qr=103, giving an acceptable heating rate and a timescale of ~ 108 yr for
Triton’s orbit to damp to 180°. The results of these numerical integrations
are shown as dotted lines in Figs. 1 and 2. Once again, the full integrations
are in good agreement with the approximate analytical results derived above.

Of course, should Triton actually lie in S2, this analysis implies that
we are presently observing this satellite in the final ~ 107 — 108 yr of its
orbital evolution before it reaches a perfectly retrograde (i = 180°) orbit.
Given that pr, r7, and Qr are not sufficiently well constrained to rule out
S2 on the basis of excessive tidal heating alone, this unlikely result is perhaps
the strongest argument against Triton currently occupying S2. Otherwise, it
would seem that we are particularly privileged to observe a large satellite at
such an unusual time in its orbital history.

7. Triton’s past orbital evolution

Our modeling of Triton tides via eq.(4) does not allow us to simulta-
neously treat the evolution in eccentricity and inclination. Without a more
detailed model of satellite tidal torques, we can only set either é or di /dt to
0, and then determine the change in i or e, respectively, due to Fy;gq. For
the future orbital evolution of Triton, this poses no serious problem, as e is
currently small, and will remain so. In tracking the possible course of past
evolution, we consider two simple limiting cases. .

First we assume that e has always been small, so that Ey;z, drives
changes in ¢ only. This allows us to put bounds on the mazimum change in
i that may have occurred in the past. The resulting evolutionary paths are
also shown in Figs. 1 and 2, for either choice of Cassini state. Timescales
for the past evolution of a in Fig. 1 are very well approximated by eq.(8)
for S1, and eq.(14) for S2. Variations in ¢ are consistent with eqs. (12) and
(15), respectively. “Initial” semi-major axes are 16 Ry for S1, and 25Ry for
S2, the increase in the latter case being due to the great efficiency of satellite
obliquity tides when 8 ~ 90°. Fig. 2 shows that Triton’s past inclination
could not have differed very much from what it is today, changing by only
~ 1° in S1, and by ~ 25° in S2. Although the S2 results are calculated
for Q7 = 103, they change relatively little if Qr is reduced by an order of
magnitude. In this case, eq.(14) shows that a at ~4.6 Gyr ago would increase
by only a factor 10%/13 = 1.43, or to ~ 36Ry. From eq.(15), we see that
this would corespond to an initial inclination of 126°. It thus appears that,
barring catastrophic or non—gravitational effects, Triton has always had a
retrograde orbit, with an inclination in the range of 120° — 160°.

What if we do permit e to evolve? From eq.(9), we see that Triton tides
will dominate Neptune tides in semi-major axis evolution if e 2 0.03. At
this point, the past evolution would diverge substantially from that shown in
Fig. 1. The Kaula tidal formalism, however, is not well suited to simulating
orbital evolution in the case of large eccentricities. There is a question as
to whether the sums over ¢ in eqs.(3) and (5) even converge for e > 0.66
(Kovalevsky and Sagnier, 1977; but see Szeto and Lambeck, 1982 for a con-
trary view), so it is likely that the results cannot be trusted for eccentricities
greater than this value. Moreover, even for moderate eccentricities the sums
in egs.(3) and (5) converge very slowly, so that truncation may introduce
spurious results. Additional errors can be introduced in the evaluation of the
individual Gip,gs, by failing to retain sufficient terms in their power series ex-
pressions. Szeto and Lambeck (1982) provide several illustrative examples,
showing that terms up to e® must be evaluated even for ¢ = 0.3 in some
cases, and that the sums over ¢ must be extended to |g| ~ 8 for e = 0.3,
and to |g| =~ 16 for e = 0.5. The alternative tidal formulation of MacDonald
(1964) appears better suited to handling large—e situations, and was used
by McCord (1966) to study the possible early evolution of Triton from a
near-parabolic orbit. MacDonald’s formulation, however, is somewhat un-
physical in its treatment of the tidal phase lags for highly eccentric orbits,

and although it does conserve orbital angular momentum, it is deficient in its
evaluation of satellite tidal dissipation. Even in the small-e limit, it predicts
an Eyigqr which is only 3/7 of the Peale and Cassen (1978) result.

Even without detailed calculations, it is possible to derive at least one
important result. When Triton tides are dominant, and assuming di/d¢ may
be neglected, eqs. (4) and (6a) may be combined to yield (for small e):
e = egexp[—(t — to)/7e], where 7, = (2/21)(Qr/kr)(mr/My)(a/rT)’n ~
3.0 x 107(Q7/100) yr at Triton’s current distance. Thus, for Qr=100, e is
damped with a 30 Myr time constant. Simultaneously, a is reduced slowly, so
as to conserve Lorp o (a(1—e?))1/2. This result allows a crude estimate of the
time it would have taken Triton to decay from a large eccentricity orbit; we
find that Triton’s orbit could have decayed from e = 0.2 to the present upper
limit of 5 x 10~* in ~200 Myr. Over this same period, @ would have been
reduced insignificantly, from 14.7 Ry to 14.1 Ry. (Recent calculations by
Goldreich et al. (private communication) suggest that a period of this order
may in fact suffice to damp even an initially near-parabolic orbit, provided
that the initial periapse satisfies the above angular momentum constraint.)

However, since we have no more than an upper bound on Triton’s present
eccentricity, it is impossible to say when in Triton’s past this rapid evolution
took place. Indeed, Triton’s primordial eccentricity may by now have decayed
below a level where it is possible, even in principle, to say when this evo-
lution occurred. This is because Triton will currently have some very small
steady-state eccentricity due to random cometary impacts. Using Burn’s
(1977) equation for the change in e due to an applied perturbative force, a
comet of mass m, and impact velocity v. striking Triton will perturb e by
Ae ~ [(1-¢?)'/2/na](m./mr)v.. Using estimates of typical cometary mass,
velocity, and frequency of collision at Neptune (Ip and Fernandez, 1988), and
performing the appropriate gravitational scaling, we find that cometary colli-
sions should give Triton a steady-state (random walk) eccentricity e ~ 10~°.
As only ~400 Myr would be required for Triton’s orbital eccentricity to de-
cay from its current upper bound of 5 x 10=% to ~ 10~°, it seems likely
that Triton’s primordial eccentricity has long since decayed below this level
of comet—induced “noise”, so that the timing of Triton’s past orbital decay
may now be impossible to reconstruct.
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