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We examine electric power generation from Earth’s rotation through its own nonrotating magnetic field
(that component of the field symmetric about Earth’s rotation axis). There is a simple general proof that this
is impossible. However, we identify a loophole in that proof and show that voltage can be continuously
generated in a low-magnetic-Reynolds-number conductor rotating with Earth, provided magnetically
permeable material is used to ensure curlðv × B0Þ ≠ 0 within the conductor, where B0 derives from the
axially symmetric component of Earth’s magnetic flux density, and v is Earth’s rotation velocity at the
conductor’s location. We solve the relevant equations for one laboratory realization, and from this solution,
we predict the voltage magnitude and sign dependence on system dimensions and orientation relative to
Earth’s rotation. The effect, which would be available nearly globally with no intermittency, requires testing
and further examination to see if it can be scaled to practical emission-free power generation.
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I. INTRODUCTION

Barnett [1] showed in 1912 that when an axially
symmetric electromagnet rotates about its north-south axis,
its magnetic field does not rotate with the magnet, resolving
a controversy [2] that had its origins in Faraday’s [3,4]
interpretation of his rotating-disk experiment. In Sec. II,
we first review Faraday’s results and carefully address the
definition of electromotive force (emf) and the historical
meaning of saying a magnetic field “rotates with the
magnet.” We then describe the compelling experimental
evidence for the nonrotation of axially symmetric magnetic
fields. In Sec. III, we consider the particular case of the
nonrotation of the axisymmetric component of Earth’s
magnetic field. The rotation of Earth’s surface through
that nonrotating component yields a steady v ×B force that
one might hope to use to generate electric power. However,
in Sec. IV we present a simple and seemingly general proof
that power generation in this way is impossible.
Nonetheless, in Sec. V we show that this proof has a

loophole, suggesting that continuous power generation is
possible if two unusual conditions are both met. These
two conditions will not simultaneously hold in any typical
natural or laboratory circuit, but it is possible to create them
together. The first condition is that the current path must lie
within a magnetically permeable conductor the topology of

which is such that ∇ × ðv ×BÞ ≠ 0 in its interior, where B
is the magnetic flux density, and v is the velocity of the
conductor. The second is that this conductor must have a
magnetic Reynolds number Rm ≪ 1, which on a laboratory
scale excludes all common metal and mu-metal conductors.
In Secs. VI–IX, we fully calculate one realization of such

a system: a low-Rm magnetically permeable cylindrical
shell. Section VI first considers the case when the shell is
stationary (v ¼ 0) with respect to a constant background
magnetic field (with zero background electric field). Then
the current density J ¼ 0, and it is straightforward to derive
the corresponding magnetic flux density B0 within the
shell. We prove that, in general, ∇ × ðv × B0Þ ≠ 0, so
that if the shell’s composition, dimensions, and velocity
can be chosen to yield Rm ≪ 1, the system will fulfill the
necessary conditions for emf generation.
In Secs. VII–IX, we demonstrate that for this system these

conditions are also sufficient. In Sec. VII, we show that if the
shell is put into motion transverse to its long axis, B0 can no
longer be a solution. We calculate the B that does satisfy the
induction equation within the moving shell when v ≠ 0 and
Rm ≪ 1 and find that the time-dependent part of B goes to
zero extremely rapidly. InSec.VIII,we find that there remains
a time-independent solution given by B0 plus a series of
perturbation terms scaled by successive powers ofRm.Weuse
these results in Sec. IX to derive an expression for the emf
generated in the shell. Section X provides an intuitive
discussion of the results of the previous calculations.
In Sec. XI, we present a parallel analysis in a frame

comoving with the translating shell and demonstrate that
there is a net nonzero Poynting vector flux delivering power
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into the shell. We show in Sec. XII that in the frame in
which the shell is translating at v, a magnetic braking term
arises in Poynting’s theorem, and the generated electrical
power equals the braking loss from Earth’s rotational
kinetic energy.
We make quantitative predictions for this system in

Sec. XIII, including the striking prediction that the voltage
generated should change sign when the cylindrical shell
(together with its attached leads and voltmeter) is rotated
by 180°. Section XIV begins the discussion of whether such
systems might be scaled up to generate useful amounts of
electric power.

II. HISTORICAL BACKGROUND
AND DEFINITIONS

In December 1831, Faraday [3,4] experimented with a
conducting disk rotating near a magnet. The disk connected
via brushes to a simple galvanometer, with leads running
to the disk’s axle and edge. The galvanometer circuit
was stationary in the laboratory. Current flowed when
the magnet was stationary and the disk rotated or when the
disk and magnet rotated coaxially along the magnet’s
north-south axis of symmetry but not when the magnet
rotated about this axis and the disk was stationary [3,5].
Faraday subsequently experimented with a rotating

conducting magnet connected to a galvanometer via
brushes on the magnet’s axle and rim [5,6]. Current flowed
when the magnet rotated around its north-south axis but
the galvanometer circuit remained stationary, or when the
magnet was stationary but the circuit rotated. Subsequent
researchers have explored additional permutations in the
configurations of Faraday’s experiments [7].
Inmodern terms, the conductingmagnet rotates at velocity

v ¼ ω × ρ (for angular velocity ω and cylindrical radius ρ)
through its own magnetic field H (or, equivalently, through
its own magnetic flux density B ¼ μH, where μ is the
magnetic permeability), generating a v ×B Lorentz force
that drives the current.
The emf around a path C with line element dl is

given by [8–10]

emf ¼
I
C
ðEþ v ×BÞ · dl

¼
Z
S
½−∂B=∂tþ∇ × ðv × BÞ� · da; ð1Þ

where E is the electric field, and the area element da is
right-hand normal to the surface S bounded by C. The
second equality in Eq. (1) holds via Stokes’s theorem and
the Faraday’s law Maxwell equation, provided there is no
jump discontinuity on S [11]. This condition is met in our
work below, and we calculate the emf using Eq. (1), which
we take as the definition of the term.
For the Faraday disk, for which B is spatially constant

and ∂B=∂t ¼ 0, only the v ×B term contributes to the

integral. If the entire circuit rotates at constantω, the curl of
v × B will be zero and we will have emf ¼ 0. But because
the galvanometer circuit is stationary while the disk rotates
in the laboratory frame, the line integral of v × B around C
is nonzero. In any frame, at least part of C is in motion. A
Poynting theorem analysis of the Faraday disk shows that
the energy for the electric current flowing between the axle
and rim in the disk comes from the disk’s kinetic energy
of rotation [12]. Taking into account the small magnetic
perturbations to the applied B due to the current that flows
in C does not change these conclusions [12].
The emf in Eq. (1) is often identical to an electromotive

force defined by the “flux rule”:

emfΦ ¼ −dΦ=dt; ð2Þ

where magnetic flux Φ ¼ R
SB · da. Inequality between the

emf and emfΦ in Eqs. (1) and (2) in certain circumstances
gives rise to so-called Faraday paradoxes. Auchmann et al.
[11], consistent with some earlier discussions [13], show
that equality requires the path velocity of the moving
surface S (and its boundary C) to be equal to the material
velocity of the conducting medium in which S is
embedded. Our applications below meet this requirement.
Faraday [3,4,6] concluded from his experiments that

magnetic field lines do not rotate with a magnet when the
magnet rotates around its axis of symmetry, but Preston [2]
showed in 1885 that Faraday’s results are equally explained
if the magnetic field does rotate with the magnet, producing a
v × B force on the stationary part of C, giving an emf
identical to that of a nonrotating field with the rotating disk.
The idea of the field “rotating with the magnet” was
understood [2,14,15] to mean that a force qv ×B will be
experienced by an electric charge q if q has a velocity v
relative to axes fixed in (so corotating with) the rotating
magnet. This understanding differs from the current under-
standing of the qv ×B force, in which v is the velocity of q
in the frame in which the magnetic flux density isB [13,16].
Poincaré [17], among other contemporary scientists [18],

asserted that since both the rotating and nonrotating
pictures appeared to give identical results, the distinction
between them was meaningless. But Barnett’s [1] experi-
ments in 1912 reproduced by Kennard [15] and improved
upon by Pegram [19] in 1917 demonstrated a difference
and resolved the question for the magnetic fields of
electromagnets by using an open circuit. Barnett placed
a cylindrical capacitor axially in the field of a solenoid (or,
in analogous experiments, between two large iron flat-pole
electromagnets); a thin wire connected the two concentric
cylinders of the capacitor. Corotation of the cylinders and
their connecting wire while holding the solenoid stationary
charged the capacitor (due to the v ×B force on the wire).
After charging, the connecting wire was disconnected, the
system despun, and opposite charges on the cylinders were
measured by an electrometer. But rotating the solenoid (or
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flat-pole electromagnets) while holding the cylindrical
capacitor and connecting wire stationary generated no
charge. Corotation of the capacitor and connecting wire
together with the solenoid charged the capacitor [19].
Barnett and his contemporaries [1,5,15,18,19] thereby
proved that the field of a rotating axially symmetric
electromagnet does not itself rotate.

III. NONROTATION OF EARTH’S
AXISYMMETRIC FIELD

The Barnett [1], Kennard [15], and Pegram [19] experi-
ments with electromagnets suggest that those components
of Earth’s magnetic field that are axisymmetric about
Earth’s rotation axis will be stationary with respect to
(do not rotate with) the rotating Earth, understood in the
sense described for rotating electromagnets in the previous
section [20–22]. These components are, for example, the
axially symmetric dipole, quadrupole, and octopole com-
ponents, with coefficients in the usual Schmidt-normalized
Legendre-function expansion of g01, g

0
2, and g

0
3, respectively

[23]. Components with coefficients gmn or hmn where m ≠ 0
depend on azimuthal angle φ like cosðmφÞ and sinðmφÞ,
respectively, and, therefore, rotate with Earth.
Nonrotation of Earth’s axisymmetric field is the

conservative expectation given the experimental results
for electromagnets [1,5,15,19], and this has been taken
to be the case by many authors [20–22,24]. If the effect
we predict in this paper is demonstrated, an ancillary
consequence will be an experimental demonstration of
the nonrotation of Earth’s axisymmetric field.
Earth’s rotation carries its surface through the nonrotat-

ing component of Earth’s magnetic flux density B with an
azimuthal speed v ¼ 465 sin θ ms−1 at colatitude θ. The
resulting v ×B force generates position-dependent volume
charge densities (of order 1 e− m−3 [22]) whose electric
field perfectly cancels v ×B [20,24,25]. A resulting
latitude-dependent surface charge density maintains overall
charge balance, with a corresponding electric potential at
Earth’s surface. Any additional motion of individual con-
ductors or conducting fluids leads to continuous extremely
rapid charge redistribution with resulting perfect cancella-
tion of fields.
However, Earth is surrounded by a conducting iono-

sphere corotating with Earth. Does this external conducting
spherical shell mean that Earth’s axisymmetric magnetic
field is somehow “dragged” into corotation with Earth?
One might imagine that this is an implication of Alfvén’s
“frozen-flux” theorem [26], which considers Ohm’s law
(for current density J) for a moving conductor

Eþ v × B ¼ J=σ ð3Þ
in the limit σ → ∞ (a so-called perfect conductor), so
that E ¼ −v ×B. Then, Eqs. (1) and (2) imply that the
magnetic flux Φ cannot change through the surface S as C

moves along—in the usual picturesque language, the flux is
“frozen in.”
But consider an axially symmetric conductor rotating

with angular speed ω about the axis of Earth’s axisym-
metric magnetic field. Clearly, ∂B=∂t ¼ 0 in such a case.
This term is the first term in the integrand of the surface
integral in Eq. (1). In spherical polar coordinates ðr; θ;φÞ,
we have v ¼ ωr sin θφ̂ and find

∇ × ðv ×BÞ ¼ −ω∂B=∂φ ð4Þ

using ∇×ðv×BÞ¼ðB ·∇Þv−ðv ·∇ÞBþvð∇ ·BÞ−Bð∇ ·vÞ
and ∇ ·B ¼ 0. Therefore, the second term in the integrand
in Eq. (1) is also zero due to axisymmetry, and by Eq. (2),
this means dΦ=dt ¼ 0. But this has nothing to do with
σ → ∞; it would be just as true for a very poor conductor as
for a perfect conductor. It is, therefore, not a consequence
of the frozen-flux theorem. It is simply a consequence
of the symmetry involved, and there is no reason to view
the field as somehow being dragged around with the
ionosphere.
In fact, there are well-known examples where translating

or rotating conductors do not “drag” magnetic fields at
all and cause no distortions in the magnetic fields through
which they are moving [22,27,28]. This is because the
background field is modified only if a current density J is
induced in the conductor; J then induces a magnetic field of
its own via Ampère’s law, and it is this induced field that
distorts the shape of the overall B field away from the
background field. This distortion often, though not always
[27], leads to field lines that have the appearance of being
dragged by the moving conductor. But Van Bladel [29]
has proven that it is impossible to induce a nonzero J for
any axially symmetric conductor rotating in an axially
symmetric field. By this theorem, a conducting ionosphere
rotating about Earth’s axially symmetric field components
cannot induce a J and, therefore, cannot distort (drag along
with it) Earth’s axially symmetric field. On the contrary,
Appendix A describes how it is Earth’s nonrotating axially
symmetric field that brings charged particles in a con-
ducting plasma around Earth into corotation [24].

IV. A PROOF THAT ELECTRIC POWER
GENERATION IS IMPOSSIBLE

Can we construct a circuit C in the lab whose rotation
along with Earth’s surface through Earth’s axially sym-
metric field generates a continuous electric current via
the v ×B force? The emf around any path C is given by
Eq. (1). The v ×B force experienced as the conductor C
rotates through Earth’s magnetic field drives electron
redistribution until the resulting electrostatic field E per-
fectly cancels the v ×B field: E ¼ −v × B everywhere
within C [5,22,30]. The redistribution of charge occurs
extremely rapidly, on a classical charge relaxation time
scale τe ∼ ϵ0=σ ≈ 10−11ð1 Sm−1=σÞ s [31]. For very good
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conductors such as typical metals for which σ ∼ 107 Sm−1,
the relaxation time is given by the electron-collision time
scale τc ∼ 107τe or ∼10−11 s [32]. Since charge redistrib-
utes rapidly and continuously to maintain E ¼ −v ×B,
emf ¼ 0 by Eq. (1) always. Electric power generation,
therefore, appears impossible for uniform rotation about an
axially symmetric field.
However, this argument contains hidden assumptions.

The electric field of a static charge distribution may always
be written as a potential of a scalar field: E ¼ −∇V. But
since∇×∇V¼ 0 always, the equationE¼−∇V¼−v×B
can hold only if ∇ × ðv ×BÞ ¼ 0. We use magnetically
permeable materials to violate this requirement, providing
a necessary, but not sufficient, condition for generating a
nonzero emf.
Of course, one can always choose to transform to a

gauge in which the transformed scalar potential ~V ¼ 0.
But then the vector potential transforms to ~A ¼ ð∇VÞt,
and E ¼ −∂ ~A=∂t −∇ ~V ¼ −∇V, as before [33]. So once
again, E ¼ −v ×B can hold only if ∇ × ðv × BÞ ¼ 0.

V. THE LOOPHOLE IN THE PROOF

Magnetically permeable materials channel magnetic flux
and can be used to alter B to give ∇ × ðv ×BÞ ≠ 0. This
inequality guarantees that the electrons in such a conductor
cannot rearrange themselves to generate an electrostatic
field E ¼ −∇V that satisfies E ¼ −v ×B in Eq. (1). This
inequality is the first of our two necessary conditions for
electric power generation. But one can still have E ¼
−v ×B ifE is no longer purely electrostatic, i.e., if one had
E ¼ −∂A=∂t −∇V ¼ −v × B, where A is the magnetic
vector potential. If this equality is required to hold for our
system, power generation will still be impossible. Are there
circumstances where this equality can be circumvented?
This may be answered using the advection-diffusion
equation for A, to which we now turn.
Consider two inertial frames. In frame K at infinity, there

is a constant background magnetic flux density (B∞)
and no electric field (E∞ ¼ 0). A conductor is moving
at constant velocity v ¼ vŷ in K. Frame K0 is the frame
comoving with the conductor. Frame K0 approximates our
frame on Earth’s surface (the laboratory frame), translating
through the nonrotating component of Earth’s field. Frame
K approximates a nonrotating frame fixed at Earth’s center
and moving with Earth in its orbit.
Frames K and K0 are not exactly related by a Lorentz

boost because of Earth’s rotation. In K0, Maxwell’s
equations incorporate rotation via the metric tensor gμν,
introducing factors

ffiffiffiffiffiffi
g00

p ≈ 1 − 1
2
ðv=cÞ2 when ðv=cÞ ≪ 1

[29]. For v ¼ 465 ms−1, ðv=cÞ2 ≈ 10−12. We show below
that these corrections are negligible compared to the effects
of interest. We assume ðv=cÞ2 ≪ 1 throughout. We may,
therefore, approximate K and K0 as two inertial frames in
relative linear motion.

Coordinates in the two frames are then related by t0 ¼ t,
x0 ¼ x, y0 ¼ y − vt, and z0 ¼ z. We have ∂xμ=∂xν ¼ δμν and
∂x0μ=∂x0ν¼δμν , ∂t=∂t0 ¼ 1, v ¼ ∂y=∂t0, ∂=∂t0 ¼ ∂=∂tþ
v∂=∂y, and ∂=∂x0 ¼ ∂=∂x, ∂=∂y0 ¼ ∂=∂y, ∂=∂z0 ¼ ∂=∂z,
so ∇02 ¼ ∇2. The fields are related by

E0 ¼ Eþ v × B; ð5Þ

B0 ¼ B, and A0 ¼ A. For our system, the curl of Eq. (5)
yields ∂B=∂t0 ¼ ∂B=∂tþ v∂B=∂y; i.e., the curl of the field
transformation for E0 is just the advective derivative for B.
While B ¼ B0, Eq. (5) means that E ¼ 0 in K implies
E0 ¼ v ×B in K0.
We begin with an analysis in frame K and examine

results inK0 in Sec. XI. Ohm’s law inK0 isE0 ¼ J0=σ, so by
Eqs. (3) and (5), J0 ¼ J. We have B ¼ μH and B0 ¼ μH0
[29]. Using E ¼ −∇V − ∂A=∂t and J ¼ ∇ ×H, Eq. (3)
yields the advection-diffusion equation for A in K:

−∇V − ∂A=∂tþ v × ð∇ ×AÞ ¼ η∇ ×∇ ×A; ð6Þ

where η ¼ ðσμÞ−1 is the magnetic diffusivity, here assumed
constant. The displacement current does not appear in
Ampère’s law because ∣ϵ0∂E=∂t∣ ≪ ∣J∣ (ϵ0 is the vacuum
permittivity) for time scales t ≫ τe [10,34]. Ohm’s law in
K0 also yields Eq. (6) because of the field transformation
Eq. (5).
The curl of Eq. (6) yields the advection-diffusion

equation for B or “induction equation”:

−∂B=∂tþ∇ × ðv ×BÞ ¼ −η∇2B: ð7Þ

Integrated over S, Eq. (7) is identical to Eq. (1). Therefore,

emf ¼ −η
Z
S
∇2B · da ¼ η

I
C
ð∇ ×BÞ · dl: ð8Þ

Whether η∇2B is negligible in Eq. (7) depends on the
magnetic Reynolds number Rm ¼ τD=τv ¼ σμvξ, where
τD ¼ ξ2=η is the magnetic diffusion time, and τv ¼ ξ=v the
transport time for a system that varies over a characteristic
length scale ξ. Then, ∣η∇2B∣ ∼ ηB=ξ2 and ∣∇ × ðv ×BÞ∣ ∼
vB=ξ so Rm ¼ ∣∇ × ðv ×BÞ∣=∣η∇2B∣ [35,36]. If Rm ≫ 1,
η∇2B is negligible in Eq. (7), so emf ¼ 0. If Rm ≪ 1,
however, we may have emf ≠ 0. Rm ≪ 1 is the second of
our two necessary conditions for electric power generation.
In Eq. (1), consider a path C lying within a conducting

slab made, say, of aluminum for which σ ¼ 4 × 107 Sm−1

and relative permeability μr ¼ 1 (μr ¼ μ=μ0 where
μ0 ¼ 4π × 10−7 Hm−1) [37]. Then for v ¼ 465 ms−1,
Rm ≫ 1 if ξ > 1 mm so emf ¼ 0. We instead explore
a system satisfying Ohm’s law with Rm ≪ 1 and
∇ × ðv ×BÞ ≠ 0. As we show below, one realization is
a path C lying within a long cylindrical shell made of an
appropriate magnetically permeable MnZn ferrite [38].
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We first consider this system at rest in a frame K in which
B∞ is constant and there is no background electric field
(E∞ ¼ 0), in which case emf ¼ 0. We then give this
system a velocity v and show that a nonzero emf will be
generated. Such a system at rest in a laboratory on Earth’s
surface would, therefore, generate electrical power as
Earth rotates.

VI. MAGNETICALLY PERMEABLE
CYLINDRICAL SHELL

Consider an infinitely long magnetically permeable
conducting cylindrical shell with axis of symmetry along
the z axis, and inner and outer radii a and b, respectively.
The background fields at infinity are B∞ ¼ B∞x̂
and E∞ ¼ 0 in a frame in which the shell has v ¼ 0. Of
course, v ×B ¼ 0, and with E∞ ¼ 0 we must have by
Eq. (3) J ¼ 0. Therefore, ∇ ×H ¼ J ¼ 0, so H ¼ −∇W,
where W is a magnetic potential. We designate H
when v ¼ 0 as H0 (and define B0 ¼ μH0) so
∇ ·H0 ¼ ∇2W ¼ 0, whose solution for a magnetically
permeable cylindrical shell for all space is well known
in cylindrical ðρ;ϕ; zÞ coordinates [39,40]. In Cartesian
coordinates, the resulting magnetic flux densities exterior to
the shell, within its conducting body, and within its hollow
interior are

B0xðρ > bÞ ¼ B∞ þ β3ðb=ρÞ2 cos 2ϕ; ð9aÞ
B0yðρ > bÞ ¼ β3ðb=ρÞ2 sin 2ϕ; ð9bÞ

B0xða ≤ ρ ≤ bÞ ¼ β1 − β2ða=ρÞ2 cos 2ϕ; ð10aÞ
B0yða ≤ ρ ≤ bÞ ¼ −β2ða=ρÞ2 sin 2ϕ; ð10bÞ

and

B0xðρ < aÞ ¼ 2β1ðμr þ 1Þ−1; ð11aÞ
B0yðρ < aÞ ¼ 0: ð11bÞ

Here,

β1 ¼ 2B∞μrðμr þ 1Þζ; ð12Þ
β2 ¼ 2B∞μrðμr − 1Þζ; ð13Þ

β3 ¼ B∞½1 − ða=bÞ2�ðμ2r − 1Þζ; ð14Þ
and

ζ ¼ ½ðμr þ 1Þ2 − ða=bÞ2ðμr − 1Þ2�−1: ð15Þ
If a ¼ 0, Eq. (10) collapses to that for a solid magnetically
permeable cylinder:

Bðρ ≤ bÞ ¼ β1ða ¼ 0Þx̂ ¼ 2μrðμr þ 1Þ−1B∞x̂; ð16Þ

for which the magnetic field is constant in the interior,
although of course the exterior (ρ > b) field is distorted
according to Eq. (9) with a ¼ 0.
Because Bz ¼ 0, only the z component of A is nonzero

[9,27], so

Bx ¼ ∂Az=∂y ð17aÞ
and

By ¼ −∂Az=∂x: ð17bÞ
Equations (9) to (11) then correspond to the vector potential
A0 ¼ A0ẑ with

A0ðρ > bÞ ¼ B∞yþ β3ðb2=ρÞ sinϕ; ð18Þ

A0ða ≤ ρ ≤ bÞ ¼ β1y − β2ða2=ρÞ sinϕ; ð19Þ

and

A0ðρ < aÞ ¼ 2β1ðμr þ 1Þ−1ρ sinϕ; ð20Þ
with the usual gauge ambiguity allowing the addition of a
gradient of a single-valued function. Moreover, because of
Eq. (17), any function of z alone may be added to A0
without affecting B0 (or E). A0 must be continuous across
the boundaries at ρ ¼ a and ρ ¼ b; this is easy to verify
for Eqs. (18)–(20). This requirement means that a choice
of gauge on one side of a boundary restricts the choice
of gauge on the other [41]: one cannot arbitrarily assign
different gradient terms (or functions of z) to A0 in each of
Eqs. (18)–(20), and this proves important in Appendix B.
From Eq. (19), we see that a solid permeable cylinder has

A0ðρ ≤ bÞ ¼ β1y in its interior. That is, the first term on the
right in Eq. (19) is that for a solid cylinder; when a ≠ 0, a
second term enters as a modification of this first a¼ 0 term.
For the region within the body of the cylindrical shell

(a ≤ ρ ≤ b), we find by Eq. (10):

∇ × ðv ×B0Þ ¼ 2vβ2a2ρ−3½ð3 sinϕ − 4sin3ϕÞx̂
þ ð3 cosϕ − 4cos3ϕÞŷÞ� ≠ 0 ð21Þ

using ∂ρ=∂x¼ cosϕ, ∂ϕ=∂x¼−ρ−1 sinϕ, ∂ρ=∂y ¼ sinϕ,
and ∂ϕ=∂y ¼ ρ−1 cosϕ. Such a translating shell if made
out of conducting material satisfying Rm ≪ 1 will, there-
fore, satisfy our two necessary criteria for electric power
generation. We show below that in this case, these con-
ditions are also sufficient.
Instead of an infinite shell, consider a finite shell lying

along the z axis from −L=2 to L=2, with L ≫ 2b. The
magnetic field in the interior (ρ < a) of a finite permeable
cylindrical shell may be written as the sum of two
contributions: the field corresponding to the shielded
interior of an infinitely long shell plus a contribution from
the field penetrating in from the openings [42]. For ρ < a
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near z ¼ �L=2, B deviates from B0, but moving inward,
this deviation falls off rapidly like expð−3.83z=aÞ [42],
so in the interior, the result for an infinite shell should hold
for a finite shell provided jzj≲ L=2 − a. For this result to
hold for ρ < a, the field in the region a ≤ ρ ≤ b must be
similarly undisturbed, so we take the result for a finite shell
in this region to correspond to those for an infinite shell
provided jzj≲ L=2 − a.

VII. TIME-DEPENDENT SOLUTION
FOR v ≠ 0 AND Rm ≪ 1

It is clear that B0 in Eq. (10) can no longer be a solution
for our system once v ≠ 0, since B0 can only solve Eq. (7)
were ∇ × ðv ×B0Þ ≠ 0 in contradiction to Eq. (21). We
show in Appendix B that B0ðx; y0Þ ¼ B0ðx; y − vtÞ, i.e.,
the advecting version of Eq. (10), also cannot be a general
solution when v ≠ 0. Any traveling wave solution of the
form Bðx; y − vtÞ solves the transport equation so will
solve Eq. (7) in the limit Rm ≫ 1. We wish to solve Eq. (7)
for smaller Rm when the diffusion term is not negligible.
It is easiest first to solve for A. We, therefore, solve

Eq. (6) explicitly to find A (and so B) for the magnetically
permeable cylindrical shell in the case v ≠ 0 (Fig. 1) with
Rm ≪ 1. We impose the requirement that in the limit v → 0
we must have A → A0 and B → B0. We first work in K
and examine the picture in K0 in Sec. XII.

Our calculations can be facilitated by a choice of gauge
to simplify Eq. (6). We choose a gauge sometimes used in
eddy current [43] or magnetohydrodynamic (MHD) [44]
applications that relates the potentials by the gauge
condition:

∇ ·A ¼ −V=η: ð22Þ

Because Eq. (22) is less familiar than the more commonly
used Lorenz (∇ ·A¼−μ0ϵ0∂V=∂t) or Coulomb (∇ ·A¼0)
gauges [45], we discuss it further in Appendix C. In the
gauge of Eq. (22), Eq. (6) simplifies to

−∂A=∂tþ v × ð∇ ×AÞ ¼ −η∇2A ð23Þ

using the identity

∇ ×∇ ×A ¼ ∇ð∇ ·AÞ −∇2A: ð24Þ

A complete solution to the system is given by Eqs. (22)
and (23) together. We have A ¼ Azẑ and ∇ ·A ¼ ∂Az=∂z.
Because v × ð∇ ×AÞ ¼ −v∂Az=∂yẑ, Eq. (23) reduces to a
single nontrivial equation:

∂Az=∂tþ v∂Az=∂y ¼ η∇2Az: ð25Þ

By Eq. (17), a function fðzÞ may be added to Az without
altering B, so fðzÞ may be chosen to yield in Eq. (22) the
appropriate V expected by physical arguments. However,
by Eq. (1), the emf around C is independent of V, so for
the emf, it is enough to solve Eq. (23).
If Rm ≫ 1, ∣η∇2Az∣ ≪ ∣v∂Az=∂yj and Eq. (25) collapses

to a transport equation whose solution is a function of the
form Azðx; y − vtÞ. We are interested in the case Rm ≪ 1,
for which we expect diffusion to be important. The
advection term v∂Az=∂t in Eq. (25) cannot be neglected
even with Rm ≪ 1 because η∇2A0 ¼ 0, and by analogy to
MHD [10,34,41], we expect (or at least must not exclude
ab initio) ∣v∂A0=∂t∣ ∼ ∣η∇2A1∣, where A1 is a small
perturbation term satisfying ∣A1∣ ∼ Rm∣A0∣. We seek a
solution Az to Eq. (25) that holds when Rm ≪ 1 for any
v ¼ vŷ with the requirement Az→A0 as v→ 0. Henceforth,
we set ξ ¼ b as the relevant diffusion length scale, so
put Rm ¼ μσvb, with advection time scale τv ¼ b=v and
diffusion time scale τD ¼ b2=η ¼ Rmτv.
We solve Eq. (25) exactly using cylindrical coordinates

in K with the origin centered in the shell at some particular
instant; such a solution will hold only for a time short
compared with τv, after which the shell will have moved
sufficiently far from the origin that the cylindrical sym-
metry assumed in Eqs. (9)–(11) is broken. However, we
will see that the system reaches a steady-state extremely
rapidly with τD ≪ τv, meaning that B extremely rapidly
adapts itself via diffusion to the shell’s motion [34,41]. For
any location of the translating shell, we may choose the

FIG. 1. A magnetically permeable, low-Rm cylindrical shell
with inner and outer radii a and b and length L is moving at
velocity v ¼ vŷ through background fields B∞ ¼ B∞x̂ and
E∞ ¼ 0. A rectangular current path C with vertices d, e, f, g
is embedded in, and translating with, the shell. An emf is
generated around C according to Eq. (63). A digital voltmeter
(DVM) measures half this emf between d and f. C lies in the
plane x ¼ b cosϕ0 ≡ x0, with jx0j ≥ a. It has right-angle vertices
at d ¼ ðx0; y0;−l=2Þ, e ¼ ðx0; y0; l=2Þ, f ¼ ðx0;−y0; l=2Þ, and
g ¼ ðx0;−y0;−l=2Þ, where y0 ¼ b sinϕ0 and l=2 < L=2 − a.
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origin in K to coincide with the center of the shell at that
instant. Since there was nothing special about the instant
chosen, this should represent the steady state for the
system.
The solution to Eq. (25) may, in general, be written as

Az ¼ Asðρ;ϕÞ þ Atðρ;ϕ; tÞ; ð26Þ

where Asðρ;ϕÞ solves the steady-state equation

v∂As=∂y ¼ η∇2As; ð27Þ

and Atðρ;ϕ; tÞ solves the time-dependent equation

∂At=∂t ¼ −v∂At=∂yþ η∇2At: ð28Þ

When Rm ≪ 1, naive inspection of Eq. (28) suggests At
will exponentially decay away on a time scale of
approximately τD [9,44]. We explicitly solve Eq. (28)
by separation of variables using At ¼ Gðρ;ϕÞWðtÞ. With
separation constant −α2, this gives

η−1∂WðtÞ=∂t ¼ −α2WðtÞ ð29Þ

and

∇2G − ðv=ηÞ∂G=∂yþ α2G ¼ 0: ð30Þ

By Eq. (29),

WðtÞ ¼ C0e−ηα
2t; ð31Þ

where all Ci’s are constants. The alternative choice of
separation constant þα2 yields an At (hence, B) exponen-
tially growing with time, so we exclude this solution on
physical grounds. If Rm ≫ 1, Eq. (28) becomes the trans-
port equation for which the separation of variables yields a
traveling wave solution.
PuttingG ¼ gðρ;ϕÞeky (a standard technique fromMHD

[10,27]) in Eq. (30) yields

∇2gþ λ2g ¼ 0 ð32Þ

with

k ¼ v=2η ð33Þ

and λ2 ¼ α2 − k2. Therefore, Eq. (31) becomes

WðtÞ ¼ C0e−ηðk
2þλ2Þt: ð34Þ

Solving Eq. (32) by putting g ¼ mðρÞnðϕÞ with separation
constant ν2 yields

mðρÞ ¼ C1JνðλρÞ þ C2YνðλρÞ ð35Þ

and

nðϕÞ ¼ C3 cosðνϕÞ þ C4 sinðνϕÞ; ð36Þ

where the Jν and Yν are Bessel functions of the first and
second kinds of order ν. Therefore,

At ¼ C0mðρÞnðϕÞekρ sinϕe−ηðk2þλ2Þt: ð37Þ

Since ηðk2 þ λ2Þ > 0 always, in Eq. (37) At decays
exponentially, and the system over time goes to the steady-
state solution Asðρ;ϕÞ in Eq. (26). We, therefore, cannot
choose the trivial solution As ¼ 0 in Eqs. (26) and (27)
since for v ¼ 0 we must have Az ¼ A0 with A0 given by
Eq. (19). Therefore, Asðv¼ 0Þ¼A0. The condition Rm ≫ 1
requires v ≠ 0, so solutions for Rm ≫ 1 need not satisfy
this constraint.
We use boundary conditions and Eqs. (35) to (37) to

solve for λ. This allows us to show explicitly that the
exponential in Eq. (37) does indeed decay on a time scale
(even faster than) approximately τD, consistent with more
general arguments [9,44]. In Eq. (35), we set C2 ¼ 0 so that
our solutions remain bounded in the case a → 0. By
Gauss’s law, we know that Bρ must be continuous across
the boundary of the cylindrical shell at ρ ¼ a. In the case
of a static external transverse-magnetic field, Bρðρ < aÞ ∼
10−3B∞ for μr ∼ 5 × 103, a value typical of the magneti-
cally permeable materials we discuss here. That is, the
shell acts as a magnetic shield for its hollow interior
[39,40,42,46]. For time-varying fields, the shielding is as
good or better than it is for the static field case [46–48].
We may then take as a boundary condition for the time-
dependent partBt ofB that Btρðρ ¼ aÞ → 0 for all ϕ as one
approaches the boundary from ρ > awithin the shell. Since
Btρ ¼ ρ−1∂At=∂ϕ and At evolves independently of As, this
boundary condition then implies that for all ϕ,

1

ρ

∂At

∂ϕ
����
ρ¼a

¼ 0: ð38Þ

One can try to satisfy Eq. (38) for all ϕ by setting the
product of constants in Eq. (37), either C0C1C3 or C0C1C4,
to be proportional to some negative power of μr that goes to
zero for large μr. But this solution is an unphysical choice,
since its effect is to force At to 0 for all ρ within a ≤ ρ ≤ b,
meaning that the cylindrical shell magnetically shields
itself throughout its entire volume as well as its hollow
interior. If this unphysical choice is made nonetheless, it
will render At negligible so that only the steady-state
solution As would remain. This conclusion will be the
same as that we obtain below, but below it is for the reason
that At decays away extremely quickly.
Using Eqs. (35) with C2 ¼ 0 and Eq. (37), requiring that

Eq. (38) be true for all ϕ requires
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JνðλaÞ ¼ 0 ð39Þ

for all ν. Choosing ν ¼ 0, the first zero of the Bessel
function gives λ ¼ 2.40=a, and Eq. (34) becomes

WðtÞ ¼ C0e−ðRm=4Þt=τve−ð2.4b=aÞ2t=τD ð40Þ

using the definitions of Rm, τv, and τD. The first expo-
nential in Eq. (40) is a decay that is slow with respect to the
translation time scale τv. The second exponential is a decay
that is much faster than the diffusion time scale τD. Since
τD ¼ Rmτv, this decay for Rm ≪ 1 is extremely fast with
respect to τv. Choosing any higher value of ν (or values, if
one makes the solution a series of terms in ν) yields larger
values for λ, leading to even faster exponential decays in
Eq. (40). In the special case a ¼ 0 in Eq. (40),WðtÞ ¼ 0 so
At ¼ 0, and the full solution is just the steady-state solution
Asða ¼ 0Þ from Eq. (26).

VIII. TIME-INDEPENDENT SOLUTION
FOR v ≠ 0, Rm ≪ 1

Clearly, WðtÞ → 0 as t → ∞ in Eq. (40), with As in
Eq. (26) the steady-state solution that remains. When
Rm ≪ 1, WðtÞ → 0 on a time scale < τD ≪ τv, so At in
Eq. (37) decays rapidly away in the time that it takes the
shell to move a distance < vτD, where vτD ≪ vτv ¼ b.
That is, we are, as expected, in a quasistationary situation
where at any point in the shell’s translation, Az ¼ Asðρ;ϕÞ
to a good approximation, with As given by Eq. (27). We
now solve Eq. (27).
First consider the special case where our cylinder is solid

(a ¼ 0) and translating at v ¼ vŷ through the background
field B∞ ¼ B∞x̂. Then A0ða ¼ 0Þ must be given by
Eq. (19) with a ¼ 0, i.e., A0 ¼ β1yþ hðzÞ, where hðzÞ
is an arbitrary function of z. This satisfies Eq. (27) provided
hðzÞ ¼ kβ1z2 with k given by Eq. (33), so that

A0ða ¼ 0Þ ¼ kβ1z2 þ β1y: ð41Þ

By the gauge condition Eq. (22), we then have

Vða ¼ 0Þ ¼ −vβ1z: ð42Þ

For a finite solid cylinder, charges in the cylinder experi-
ence a v ×B force and flow in response, redistributing on
an extremely short time scale τe until an electric field
E ¼ −∇V is established that perfectly cancels v ×B. In
particular, we see that Eq. (42) gives the physically correct
answer for the special case of a translating finite solid
cylinder.
Now what happens when our cylinder becomes a

cylindrical shell with a ≠ 0? We anticipate from Eq. (19)
that A0ða ≠ 0Þ will be given by A0ða ¼ 0Þ plus additional
terms. We solve Eq. (27) for the general (a ≠ 0, v ≠ 0)

case, with the requirements that we recover Eq. (41) when
a ¼ 0 and Eq. (19) when v ¼ 0.
Equation (27) is solved by fðρ;ϕÞeky, where the function

f satisfies

∇2f − k2f ¼ 0 ð43Þ

with k given by Eq. (33), so

fðρ;ϕÞ¼ ½C5 cosðνϕÞþC6 sinðνϕÞ�½C7IνðkρÞþC8KνðkρÞ�;
ð44Þ

where the separation constant is ν2, and Iν and Kν are
modified Bessel functions of order ν of the first and second
kind. We, therefore, write the general solution as

As ¼ kβ1z2 þ β1yþ fðρ;ϕÞeky; ð45Þ

where the first two terms provide the solution to Eq. (27)
for the case a ¼ 0, and the final term modifies that solution
analogously to Eq. (19) for the case a ≠ 0. Equation (45)
must go to Eq. (19) in the v ¼ 0 limit. Noting that as
kρ → 0 [49]:

K1ðkρÞ¼ ðkρÞ−1þkρð2γ−1Þþðkρ=2Þ lnðkρ=2ÞþOðkρÞ2;
ð46Þ

where γ ¼ 0.5772… is the Euler constant,

IνðkρÞ ¼ ðkρÞν=ð2νν!Þ þOðkρÞνþ2; ð47Þ

and

eky ¼ 1þ kρ sinϕþ ð1=2ÞðkρÞ2sin2ϕþOðkρÞ3; ð48Þ

requiring Eq. (45) to equal Eq. (19) for v ¼ 0 fixes in
Eq. (44) C5 ¼ 0 ¼ C7 and ν ¼ 1, with C6 ¼ 1 and
C8 ¼ −β2ka2. Then the solution to Eq. (27) is

Azða≤ ρ≤ bÞ¼As¼ kβ1z2þβ1y−β2ka2K1ðkρÞeky sinϕ:
ð49Þ

For kρ → 0, Eq. (49) becomes

Azða ≤ ρ ≤ bÞ ¼ As ¼ A0 þ A1 þOðRmÞ2; ð50Þ

where A0 is given by Eq. (19),

A1 ¼ −ðRm=2Þb−1β2a2sin2ϕ; ð51Þ

and Rm ¼ 2kb ¼ μσvb. That is, when Rm≪ 1, Az for v ≠ 0
is perturbed away from the v ¼ 0 solution (A0) by a series
whose terms are scaled by powers of Rm.

CHRISTOPHER F. CHYBA and KEVIN P. HAND PHYS. REV. APPLIED 6, 014017 (2016)

014017-8



Finally, applying the gauge condition Eq. (22) to
A ¼ Azẑ with Eq. (49), we find

Vða ≤ ρ ≤ bÞ ¼ −vβ1z; ð52Þ
so that even when a ≠ 0,

∇V ¼ −vβ1ẑ: ð53Þ

IX. GENERATION OF AN EMF

Equations (17a) and (49) yield

Bxða ≤ ρ ≤ bÞ ¼ β1 − β2ða=ρÞ2eky
× f½kρ cos 2ϕþ ðkρÞ2 sinϕ�K1ðkρÞ
− ðkρÞ2sin2ϕK0ðkρÞg ð54Þ

using the identities [50]

∂K1ðkρÞ=∂ðkρÞ ¼ −½K0ðkρÞ þ K2ðkρÞ�=2 ð55Þ

and

K0ðkρÞ − K2ðkρÞ ¼ −ð2=kρÞK1ðkρÞ; ð56Þ

so that

∂K1ðkρÞ=∂ðkρÞ ¼ −K0ðkρÞ − ðkρÞ−1K1ðkρÞ: ð57Þ

Noting that [49]

K0ðkρÞ ¼ −γ − lnðkρ=2Þ þOðkρÞ; ð58Þ

as v → 0, we have by Eq. (54) for Rm ≪ 1:

Bxða ≤ ρ ≤ bÞ ¼ B0x þ B1x þOðRmÞ2 ð59Þ

with

B1x ¼ −Rmb−1β2a2ρ−1 sinϕcos2ϕ: ð60Þ

Figure 2 shows for a particular case how Bx differs from
B0x to OðRmÞ.
Similarly, Eqs. (17b) and (49) yield

Byða ≤ ρ ≤ bÞ ¼ B0y þ B1y þOðRmÞ2 ð61Þ

with

B1y ¼ −Rmb−1β2a2ρ−1sin2ϕ cosϕ: ð62Þ

Figure 3 shows for a particular case how By differs from
B0y to OðRmÞ.
We see that B1x ¼ ∂A1=∂y and B1y ¼ −∂A1=∂x.

Equations (60) and (62) are readily checked to verify
that they do solve Eq. (7), e.g., v∂B0x=∂y ¼ η∇2B1x as

required. Equations (59) and (61) show that the effect of
v ≠ 0 for Rm ≪ 1 is to perturb B away from B0 by a series
scaled by successive powers of Rm.
The asymmetry of Bx about y ¼ 0 leads to the continu-

ous generation of an emf within the cylindrical shell.
Consider the current path C in Fig. 1 for x0 ¼ b cosϕ0,
and y0 ¼ b sinϕ0. Then, Eq. (8) for this path gives

FIG. 2. Deviations in the x component Bx of the magnetic flux
density [Eq. (59)] for the moving cylindrical shell from that
for the stationary shell [Eq. (10)], relative to the flux density at
infinity, for a shell made of MN60 material (see text) with
b ¼ 1 cm. These results are for the x0 ¼ b=

ffiffiffi
2

p
plane, with

ða=bÞ ¼ 1=
ffiffiffi
2

p
.

FIG. 3. Deviations in the y component By of the magnetic
flux density [Eq. (61)] for the moving cylindrical shell from
that for the stationary shell [Eq. (10)], relative to the flux density
at infinity, for a shell made of MN60 material (see text) with
b ¼ 1 cm. These results are for the y0 ¼ b=

ffiffiffi
2

p
plane, with

ða=bÞ ¼ 1=
ffiffiffi
2

p
.
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emfðx0; y0Þ ¼ −η
I
C
∇2Azẑ · dl

¼ −2Rmvβ2lða=bÞ2 sinϕ0cos2ϕ0 þOðRmÞ2
ð63Þ

using

η∇ ×B ¼ −∇V − η∇2A ð64Þ
from Eqs. (22) and (24), Az ¼ As, and Eqs. (27), (17), and
(59). Equation (63) is valid only for Rm ≪ 1; if Rm ≫ 1,
emf ¼ 0 by Eq. (7). Even for Rm ≪ 1, emf ¼ 0 in Eq. (63)
if v ¼ 0, or a ¼ 0, or μr ¼ 1. The emf in K0 is the same as
that in K provided ðv=cÞ2 ≪ 1 [13].
The result in Eq. (63) is for one designated current

path C. For an arbitrary C with segments parallel to
the z axis, the integration underlying Eq. (63) leads to
emf ∝ ½Bxðx1; y1Þ − Bxðx2; y2Þ�, where the coordinates
designate the ðx; yÞ coordinates of the two segments of
C parallel to the z axis. (Arbitrary current paths can then be
built up by fusing such rectangular subpaths.) Because of
the symmetry in ϕ of B0x, Eq. (10a), it is clear that for every
such circuit with 0 < ϕ < π, there is a corresponding
circuit with π < ϕ < 2π that yields an emf of opposite
sign with respect to B0x. This is because the scalar product
ðv ×B0Þ · dl ¼ vB0xẑ · dl has the opposite sign in the two
cases, since the circuits are mirror reflections across the
y ¼ 0 plane, and in each case, C is traversed using a right-
hand rule. Over the entire shell, these contributions, there-
fore, average to zero. It is the component of Bx of OðRmÞ
that makes a nonzero contribution because of the asym-
metry in ϕ of B1x, with B1x switching sign at the y ¼ 0
plane (Fig. 2). With respect to B1x, for every current path
C with 0 < ϕ < π, there is a corresponding path with
π < ϕ < 2π that yields an emf of identical sign, so the two
do not cancel. ToOðRmÞ, therefore, the average emf around
the shell cannot be zero. We will see in Sec. XII that
consistent with a nonzero emf, there is a net absorption of
power by the shell from Poynting vector inflow.
An infinite solid conducting bar moving through a

background magnetic field will (in principle) generate a
current due to v × B since its infinite extent prevents the
accumulation of the charges at its ends that for a finite bar
generates the electric field E ¼ −∇V ¼ −v ×B. However,
even for the infinite solid bar, ∇ × ðv ×BÞ ¼ 0, so there
will be emf ¼ 0 about any closed path C lying within the
bar. The nonzero emf in Eq. (63) is not, therefore,
attributable to the fact that our formalism began with an
infinite cylindrical shell.

X. INTUITIVE PHYSICAL PICTURE

A simple physical picture offers insight into why a
magnetically permeable cylindrical shell moving at veloc-
ity v and satisfying Rm ≪ 1 is expected to generate an emf

according to Eq. (8). In frame K, picture a finite cylindrical
shell moving transversely to its long axis (Fig. 1). Assume
a ≠ 0. By Eq. (21), we know that it is impossible for the
shell’s electrons to establish a configuration such that
−∇V ¼ −v ×B.
Imagine beginning with the cylindrical shell at rest and

then placing it into motion at velocity v. The magnetic flux
density within the shell itself is initially B0 given by
Eq. (10).B0 results fromMaxwell’s equations requiring the
continuity of the normal component of B and tangential
component of H at the surfaces ρ ¼ a and ρ ¼ b. As the
shell moves, it attempts, so to speak, to enforce B ¼ B0
throughout a≤ρ≤b. If τD=τv¼Rm≫1, the diffusion time
scale τD for the magnetic flux density is much longer than
the advection time scale τv. That is, diffusion is negligible
compared to advection, and the disturbance in the field
moves along with the shell, so that B ¼ B0 to very high
precision. (Alfvén’s frozen-flux theorem [26] holds.)
Since ∇ × B0 ¼ 0, by Eq. (8) we must have emf ¼ 0
when Rm ≫ 1.
Contrast this limit with the case τD=τv ¼ Rm ≪ 1. Now

the time scale τD for diffusion is much shorter than τv. That
is, as the shell moves, the field’s adjustment is dominated
not by advection but by diffusion toward a field configu-
ration at which diffusion stops, i.e., toward B0ða ≤ ρ ≤ bÞ,
where the “destination” B0 is the value that applies for a
stationary shell at the location to which the shell has just
moved. The field can never reach this end point since the
shell keeps moving even as the field diffuses, so a steady
state is reached in which the diffusing field differs slightly
from B0. The field within the shell does not adjust
instantaneously to the shell’s motion, so it never (unless
the shell is brought to rest in K) fully “catches up” to that
motion. A closed path C moving with the shell constantly
experiences a field that is diffusing across its boundaries,
and Eq. (8), in general, is nonzero.

XI. ANALYSIS IN THE LABORATORY FRAME

We now consider our system in the laboratory frame K0,
where v ¼ 0 so there is no magnetic v ×B force, but there
is, instead, an electric field given by the field transformation
Eq. (5): E0 ¼ Eþ v ×B. Ohm’s law in K0 is simply
E0 ¼ J0=σ, which leads to the induction equation in K0:

∂B=∂t0 ¼ η∇2B: ð65Þ
Since J0 ¼ J and B0 ¼ B when ðv=cÞ2 ≪ 1, the emf is
given by

emf 0 ¼
I
C
E0 · dl0 ¼ σ−1

I
C
J · dl ¼ η

I
C
ð∇ × BÞ · dl:

ð66Þ
We use the fact that E0 and, therefore, J must be parallel to
ẑ, so the relevant part of dl is perpendicular to y, and,
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therefore, we can put dl0 ¼ dl. Equation (66) is identical
to Eq. (8) and, therefore, to Eq. (63), so emf 0 ¼ emf, as
expected [13]. Equation (66) is nonzero in K0 provided
the same conditions hold as those needed for Eq. (63) to
give emf ≠ 0.
It might, nevertheless, seem puzzling that an emf could

be generated in K0. We intuitively expect ∂B=∂t0 ¼ 0 in a
steady state, so that by Eqs. (8) and (65), emf 0 ¼ 0. But care
must be taken with B in Eq. (65): because B is not rotating
with Earth, it cannot be treated implicitly asBðx; y0Þ, where
y0 ¼ y − vt relates the coordinates in K0 and K.
If B rotates with Earth, then in K0 we simply have

B ¼ Bðx; y0Þ and ∂Bðx; y0Þ=∂t0 ¼ ð∂B=∂y0Þð∂y0=∂t0Þ ¼ 0
using the chain rule and ∂y0=∂t0 ¼ 0. But treating B as
rotating with Earth is inconsistent with the clear expect-
ation from the results of the Barnett [1], Kennard [15], and
Pegram [19] experiments. Rather, in K0 we must treat B as
advecting through the cylindrical shell at velocity v ¼ −vŷ,
which we capture by writingB ¼ Bðx; yÞwith y ¼ y0 þ vt.
The time dependence of Bðx; yÞ is driven by the advection
of B through the shell; this dependence is included
implicitly by y ¼ yðy0; tÞ ¼ y0 þ vt. Then by the chain
rule and ∂y=∂t0 ¼ v,

∂B=∂t0 ¼∂B½x;yðy0;tÞ�=∂t0 ¼ð∂B=∂yÞð∂y=∂t0Þ¼v∂B=∂y:
ð67Þ

That is, we do have ∂Bðx; y0Þ=∂t0 ¼ 0, but we also have
∂Bðx; yÞ=∂t0 ¼ v∂B=∂y ≠ 0, and we must distinguish
between the two. Only the second representation for B
in K0 is consistent with experiment.
Substituting Eq. (67) into (65) gives a time-independent

equation for B:

v∂B=∂y0 ¼ η∇2B: ð68Þ

Recalling ∂=∂y0 ¼ ∂=∂y, Eq. (68) yields Eq. (27) for A
given the gauge choice Eq. (22). Physically, the induction
(advection-diffusion) equation concerns the steady state
that is reached in B as it advects through the Rm ≪ 1
cylindrical shell and undergoes concomitant diffusion; as a
result, B [as we know from Eqs. (59)–(62)] is slightly
perturbed away from B0. If B instead advects along with
the shell, there will be no emf.
A Poynting vector and flux transport analysis [41,51,52]

in K0 make it clear that energy is flowing into our Rm ≪ 1
cylindrical shell, providing the power required to sustain
emf 0 ≠ 0. The Poynting vector in K0 is

S0 ¼ μ−1ðE0 ×BÞ ¼ μ−1ηð∇ ×BÞ ×B; ð69Þ

where we use E0 ¼ J=σ and Ampère’s law. If B ¼ B0, we
will have S0 ¼ 0 by ∇ ×B0 ¼ 0 in Eq. (69), and there will
be no energy input to the cylindrical shell. However,

∇ ×B1 ≠ 0 and using Eqs. (24), (23), (53), (27),
and (17), we find

η∇ ×B ¼ vðβ1 − BxÞẑ ð70Þ

giving

S0 ¼ vμ−1ðβ1 − BxÞðBxŷ − Byx̂Þ: ð71Þ

We perform our calculations at the instant at which the
origins of the K0 and K frames coincide. The net energy
flux P0

S into the shell’s surface within l=2 ≤ z ≤ l=2 (where
l=2 is chosen to be sufficiently far in from the shell’s edge
at L=2) is given by

P0
S ¼

Z
2π

0

Z
l=2

−l=2
S0 · ρ̂ρdϕdz; ð72Þ

where ρ̂ ¼ cosϕx̂þ sinϕŷ and the boundaries at both
ρ ¼ b and ρ ¼ a must be taken into account by summing
the contributions from evaluating Eq. (72) at ρ ¼ b and at
ρ ¼ a. The boundary at ρ ¼ a enters with a negative sign,
opposite from that at ρ ¼ b. The calculation is simplified
by noting

ðBxŷ − Byx̂Þ · ρ̂ ¼ −By cosϕþ Bx sinϕ

¼ ½β1 þ β2ða=ρÞ2� sinϕþOðRmÞ2; ð73Þ

i.e., theOðRmÞ1 terms cancel in Eq. (73). In Eq. (72), nearly
all terms integrate to zero and

P0
S ¼ ðπ=4Þσv2β22a2½1 − ða=bÞ2�lþOðRmÞ2: ð74Þ

P0
S ¼ 0 if v ¼ 0, or μr ¼ 1 (because then β2 ¼ 0), or a ¼ 0.

Otherwise, the Poynting vector S0 in K0 gives a net energy
flow into the cylindrical shell that sustains the emf 0.
It is interesting to ask which terms within S0 provide

this energy. Nearly every term in Eq. (71) makes zero
contribution to Eq. (72) either because it cancels an
identical term of opposite sign or because it integrates to
zero over ϕ: the energy from most terms simply flows
through the shell, with as much energy leaving as entering.
The only term in S0 that makes a nonzero contribution is

S0
x ¼ 2σv2β22a

4ρ−3sin2ϕ cosϕð4cos2ϕ − 1Þx̂: ð75Þ

Equation (65) can be written [41,52] as

∂B=∂t0 ¼ ∇ × ðw ×BÞ ð76Þ

for an appropriate velocity w. By Ampère’s and Ohm’s law
in K0, we have

E0 ¼ η∇ ×B; ð77Þ
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so E0 ·B ¼ 0 since B ¼ ðBx; By; 0Þ. When E0 ·B ¼ 0, w
in Eq. (76) is [41,52]

w ¼ ðE0 × BÞ=B2; ð78Þ

which is called the “flux-transporting velocity” [52], mean-
ing that w for the case σ ≠ ∞ preserves flux because it
satisfies Eq. (76) in the same way that v satisfies Eq. (7) for
the case σ ¼ ∞. A contour C in the cylindrical shell will,
therefore, have dΦ=dt ¼ 0 through its corresponding sur-
face S if C is moving at w, where w may vary point to point
along C.
By Eqs. (69) and (78),

w ¼ μS0=B2: ð79Þ

Direct calculation using Eqs. (79) and (71) reveals w to be
algebraically complicated with w ≠ v, even while satisfy-
ing ∇ × ðw ×BÞ ¼ ∇ × ðv ×BÞ, as it must. When w ≠ v,
then if C is simply being transported with the conductor
at v ≠ 0, there must be an emf around C. This is the case,
for example, for the contour C in Fig. 1. By Eq. (78),
the zero-velocity solution B0 in K0 is not transported
through the shell because, in this case, E0 ¼ 0 by
Eq. (77), so w ¼ 0 in Eq. (78). Of course, B0 does not
diffuse: ∇2B0 ¼ 0. Only the perturbations B1 and higher
orders will have w ≠ 0.
Equation (79) means that magnetic flux is transported

proportionally to the transport of energy defined
by the Poynting vector. Since S0 integrated over the
cylindrical shell is nonzero, there is a corresponding
net flow of magnetic flux into the shell. We have a
picture in K0 in which by Eq. (75), near the x ¼ 0 plane for
π=3<ϕ< 2π=3 and again for 4π=3 < ϕ < 5π=3, mag-
netic field lines are diffusing (transported at velocity w) in
the x direction vertically toward the x ¼ 0 plane from
above and below. These lines annihilate [9,52,53] in the
x ¼ 0 plane, providing energy that drives the current flow
in C. The cancellation (annihilation) of the magnetic filed
lines in the x ¼ 0 plane preserves the gradient, which,
in turn, maintains the continuing inward diffusion of
the field.
We note an analogy to the homopolar generator. By

Eqs. (67), (68), and (76),

emf 0 ¼
I
C
ðw ×BÞ · dl; ð80Þ

where w is given by Eq. (78). In the homopolar generator,
the analog to Eq. (80) gives emf 0 ≠ 0 because only part of
C is rotating, so v varies (stepwise) around C, and v × B
does not integrate to 0 around C. In the Rm ≪ 1 cylindrical
shell of Fig. 1, emf 0 ≠ 0 because w varies around C
according to Eq. (79), so w × B does not integrate to 0
around C.

XII. POYNTING’S THEOREM AND
MAGNETIC BRAKING

When Rm ≪ 1, in the steady state [e.g., Eq. (45)] we
have ∂A=∂t ¼ 0, so E ¼ −∇V ¼ vβ1ẑ by Eq. (53).
Together with Ampère’s law and Eq. (70), we have

E · J ¼ σv2β1ðβ1 − BxÞ: ð81Þ

By Eq. (3), we also have

E · J ¼ σ−1J2 þ ðJ ×BÞ · v: ð82Þ

Integrating Eq. (81) over the volume dV ¼ ρdϕdρdz gives
zero, so Eq. (82) implies

σ−1
Z
V
J2dV ¼ −

Z
V
ðJ ×BÞ · v dV; ð83Þ

where the integral on the right-hand side is the familiar
expression for magnetic braking. In K, Joule heating,
therefore, derives from the energy made available by
magnetic braking of the cylindrical shell. Since the shell
is being carried by Earth, it is clear that electrical power in
our system derives ultimately from the kinetic energy of
Earth’s rotation. This is analogous to the Poynting theorem
analysis of the homopolar generator [12].
Explicitly integrating ðJ ×BÞ · v in Eq. (83) over the

volume V of the shell with J ¼ μ−1∇ ×B shows the power
removed from Earth’s rotational kinetic energy to be

Pk ¼ −σv2l
Z

b

a

Z
2π

0

Bxðβ1 − BxÞρdρdϕ

¼ ðπ=2Þσv2β22la2½1 − ða=bÞ2� þOðRmÞ2: ð84Þ

IfB ¼ B0, we will have Pk ¼ 0 since∇ ×B0 ¼ 0. If v¼ 0
or μr ¼ 1 or a ¼ 0, then Pk ¼ 0. The power in K must
equal that in the laboratory frame K0 to Oðv=cÞ2 [13].
The manner in which this power arises in K0 is of

interest. Poynting’s theorem [54] states that the rate at
which work is done on the electrical charges within a
volume V of surface area Σ is equal to the decrease in
energy stored in the electric and magnetic fields minus the
energy that flows out through the surface bounding the
volume. In K0, Poynting’s theorem is

Z
V
E0 · J dV ¼ −μ−1

Z
V
B · ∂B=∂t0dV −

Z
Σ
S0 · dΣ; ð85Þ

where, as before, the displacement current is negligible.
By E0 ¼ σ−1J0, E0 · J ¼ σ−1J2. The second term on the
right of Eq. (85) is just Eq. (72). The first term on the right
may be evaluated using Eq. (65), a calculation most easily
performed with B in cylindrical coordinates (Appendix D).
The result is identical to Eq. (74).
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Therefore, inK0, Eq. (85) gives the power P0
P provided to

the shell to be

P0
P ¼ σ−1

Z
V
J2dV¼ðπ=2Þσv2β22a2½1− ða=bÞ2�lþOðRmÞ2;

ð86Þ
with the energy for electrical power provided in Poynting’s
theorem coming equally from Poynting vector inflow and
the ∂B=∂t0 term. This result is, indeed, equal to the
expression found in Eq. (84) by calculating in the K frame:
Pk ¼ P0

P. For a given choice of b, Eqs. (84) and (86) reach
their maximum values for a ¼ b=

ffiffiffi
2

p
.

An important question is whether the slight despinning
of Earth caused by the magnetic braking found here is
consistent with angular momentum conservation.
Mechanical systems can come in or out of rotation solely
via the transfer of angular momentum between mechanical
rotation and the electromagnetic field. (For the fully
calculated example of a charged magnetized sphere exhib-
iting this behavior, see Refs. [55,56].) The angular momen-
tum of the electromagnetic field is proportional to r × S
(with r the usual radial component in a spherical coordinate
system). For the system in our thought experiment, the
analogous issue is linear momentum conservation. In K,
the mechanical momentum of the cylindrical shell lies in
the ŷ direction, and the braking force per unit volume given
by J ×B acts in the −ŷ direction. The momentum (per unit
volume) of the electromagnetic field associated with this
system is p ¼ ε0μ0S, with S ¼ μ−1E ×B ¼ ðμσÞ−1J × B;
i.e., p is proportional to and lies in the direction of the
magnetic braking vector. Therefore, as the system is
braked, positive mechanical linear momentum is lost from
the cylindrical shell while negative linear momentum
is lost from the electromagnetic field, and momentum
conservation is possible.

XIII. EXPERIMENTAL PREDICTIONS

Predicting the emf to be measured in a laboratory test of
these claims requires that part B∞ of Earth’s total field that
is axially symmetric about the planet’s rotation axis. This
part is well approximated by summing the axisymmetric
dipole, quadrupole, and octupole components of the total
field to yield the northward (X) and downward (Z)
components of B∞ at a point on the surface of the
Earth. These components are [23] at colatitude θ,

X ¼ −g01 sinθ − 3g02 sinθ cosθ − ð3=2Þg03 sinθð5 cos2 θ − 1Þ
ð87aÞ

and

Z ¼ −2g01 cos θ − ð3=2Þg02ð3 cos2 θ − 1Þ
− 2g03 cos θð5 cos2 θ − 3Þ ð87bÞ

giving

B∞ ¼ ðX2 þ Z2Þ1=2; ð87cÞ

where the Gauss coefficients g01 ¼ −29 496.5 nT,
g02 ¼ −2396.6 nT, and g03 ¼ 1339.7 nT [57]. Then for, say,
Princeton’s colatitude θ¼ 49°390 (for which v¼ 354ms−1)
B∞ ¼ 45 μT, pointed downward into Earth’s surface at
an angle (from the horizontal when facing the north
geographic pole) tan−1ðZ=XÞ ¼ 57.5°.
Suppose that our cylindrical shell has dimensions

L ¼ 20 cm, b ¼ 1 cm, and a ¼ b=
ffiffiffi
2

p
, and is made of

MN60 MnZn ferrite, with data-sheet values given
as μr ¼ 6500� 3000 and σ ≈ 0.5 Sm−1 [58]. Then Rm ¼
1.4 × 10−2 ≪ 1, while Rm ≫ ðv=cÞ2 ensures that

ffiffiffiffiffiffi
g00

p
effects are small compared to first-order perturbations
scaled by Rm. For ϕ0 ¼ 45°, Eq. (63) gives emf ¼ 65 μV.
By inspection of the integral in Eq. (63), the emf should

reverse sign when the shell (together with the attached
measuring apparatus, a digital voltmeter; see Fig. 1) is
rotated by 180°. This is a striking prediction that should
separate an emf generated by the effect predicted here
from other types of emf generation. Our derivation is valid
only for v transverse to the shell, but the emf must pass
through zero between the two transverse orientations that
are separated by 180°. A voltmeter across d and f in Fig. 1
measures half the emf around C in Eq. (63). We caution
that C may “choose itself” under rotation, and experiment
will show whether a voltage measurement actually some-
how averages over many possible current paths. If so, we
may approximate the expected emf by averaging over ρ and
ϕ in the calculation leading to Eq. (63):

hemfi ¼ −
1

πðb − aÞ
Z

b

a

Z
π

0

vBxldρdϕ

¼ −ð4=3πÞRmvβ2lða=bÞ2ð1 − a=bÞ−1 lnðb=aÞ;
ð88Þ

which for the identical parameter values as above gives
hemfi ¼ 46 μV. Once again, the emf measured as in Fig. 1
yields half this value, and the sign reverses under 180°
rotation.

XIV. SCALING AND CONCLUSIONS

The cylindrical shell is chosen as an especially simple
realization of a conductor with ∇ × ðv ×BÞ ≠ 0, and
MN60 material is chosen to provide Rm ≪ 1 on a labo-
ratory scale. For the MN60 device considered above,
Pk ≈ 16 nW by Eq. (86). By the maximum power transfer
theorem, at most half of this power can be transferred to the
load [59]. To be useful, the effect must be scaled up greatly
in voltage and power. Oneway might be to maintain Rm≪1
while increasing σ, by decreasing μr, b, and, therefore, a.
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Carbon nanotubes can be coated with materials such as iron
[60,61], so very small low-Rm magnetically permeable
tubes seem plausible. One must also consider resistance
and Ohmic loss.
It should be possible to separate the magnetic shield

producing ∇ × ðv ×BÞ ≠ 0 from the conductor providing
Rm ≪ 1. For example, note that the functional form of
Eq. (9) for the magnetic flux density outside a magnetically
permeable shell is identical to that of Eq. (10) for the flux
density in the shell’s interior. This guarantees that Eq. (21)
holds outside the shell with the substitutions β2 → −β3 and
a2 → b2. Therefore, we should be able to realize the effect
using a magnetically permeable cylinder surrounded by
an insulated concentric cylindrical shell of a nonpermeable
low-Rm material and find results analogous to those
found above. Graphite has σ ¼ 7.3 × 104 Sm−1 [37],
giving Rm ≈ 2 × 10−2 for b ¼ 1 mm, so we can hope to
realize the effect for a mu-metal or ferrous cylindrical
core surrounded by a thin insulator with an overlying
shell of graphite. Decreasing b to 5 μm allows copper
(σ ¼ 6.0 × 107 Sm−1 [37]) or other common metals to be
used for the outer layer, with obvious advantages.
Altogether different topologies and materials are possible.
The effect predicted here would be available nearly

globally and with no intermittency, but it requires testing
and then further examination to see if it or some other
configuration based on broadly similar principles can be
scaled to practical emission-free power generation. Devices
can have important practical implications even if only
voltages of approximately 1 V can be achieved. Such a
device would represent a small-application power supply
whose lifetime will be limited only by material degradation.
At the other extreme end of speculations regarding
generated power, we note that global installed power-
generation capacity is projected to grow to 10 700 GW
by 2040 [62]. Imagine as an upper limit that human
civilization generates this power entirely from Earth’s
rotation through its magnetic field. Over a century, the
resulting kinetic energy loss will increase Earth’s rotation
period by 7 ms. This may be compared to fluctuations in the
length of Earth’s day of 10 ms over time intervals of several
decades [63] and an observed long-term increase (domi-
nated by lunar tidal recession) of 2.5 ms per century [64].
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APPENDIX A: COROTATION OF
THE IONOSPHERE

What happens to charged particles in a conducting
plasma around Earth in the presence of Earth’s nonrotating
axially symmetric field? Hones and Bergeson [24] building
on Davis [20,25] and Backus [30] examined this question
for the complicated general case of magnetic fields
with both axisymmetric and nonaxisymmetric components,
treating the purely axisymmetric case as a special case of
their more general result. Here we follow their overall logic
but present the simpler calculation for the axisymmetric
component only: the special case of a magnetic dipole
aligned antiparallel to Earth’s rotation axis.
An observer in a nonrotating frame sees a (nonrotating)

dipole field antialigned with Earth’s axis given by
Br ¼ −ð2M=r3Þ cos θ, Bθ ¼ −ðM=r3Þ sin θ, and Bφ ¼ 0,
where M is a constant proportional to the magnetic dipole
moment. In general, the electric field seen in this frame is
given by E ¼ −∂A=∂t −∇V. However, for our nonrotat-
ing dipole, we can put ∂A=∂t ¼ 0 so E ¼ −∇V.
Earth’s rotation through its own dipole field leads to
an electrostatic field within the Earth that balances the
resulting v × B force: E ¼ −∇V ¼ −v ×B, which gives
V ¼ −ðMω=rÞ sin2 θ and a surface potential for Earth (of
radius R⊕) of Vðr ¼ R⊕Þ ¼ −ðMω=R⊕Þ sin2 θ. Fields E
and B in the plasma must satisfy E · B ¼ 0 due to
the plasma’s near-infinite conductivity parallel to the
magnetic field lines. This condition gives 2 cos θ∂V=∂r ¼
−ð1=rÞ sin θ∂V=∂θ. The solution consistent with the
boundary condition at r ¼ R⊕ is V ¼ −ðMω=rÞ sin2 θ, so
that Er ¼ ðMω=r2Þ sin2 θ, Eθ ¼ −ð2Mω=r2Þ sin θ cos θ,
and Eφ ¼ 0. (Note that these equations satisfy E∞ ¼ 0.)
Charged particles in this plasma drift azimuthally at a
velocity v ¼ ðE ×BÞ=B2; direct calculation gives v ¼
−ωr sin θϕ̂ for particles of any charge or mass. That is,
the ionosphere comes into corotation with Earth because
the charged particles composing it acquire exactly the
necessary corotation velocity from their interactions with
Earth’s nonrotating axially symmetric field together with
the electric field induced in the ionosphere. Earth’s rotation
through the nonrotating axisymmetric component of its
magnetic field drives ionospheric corotation.
The nonaxisymmetric components—those components

that give Earth’s magnetic field its tilt away from Earth’s
rotation axis—of course, do rotate with Earth. Since
magnetic field lines are defined as lines everywhere tangent
to the magnetic field, an observer well away from Earth
who could somehow see field lines would see Earth’s tilted

CHRISTOPHER F. CHYBA and KEVIN P. HAND PHYS. REV. APPLIED 6, 014017 (2016)

014017-14



dipole lines rotating with Earth—the rotating lines being
the vector sum of a nonrotating azimuthally constant
component plus a rotating azimuthally varying component.
There is a standard result that magnetic lines of force in a

perfectly conducting fluid move with the fluid—the fluid is
“line preserving” [9,51,65]. (However, magnetic field lines
are not relativistically covariant [51], and their reality must
be treated with care [21,66,67].) When we calculate the
equations for the magnetic field lines of a tilted dipole, we
find that these lines are described by axisymmetric time-
independent terms (from the nonrotating axisymmetric
dipole) plus terms sinusoidal in ωt, i.e., terms that rotate
with Earth. The field lines do, indeed, vary sinusoidally
with ωt due to the superposition of a rotating component on
top of an underlying axially symmetric component.
Magnetic field lines must satisfy dl × B ¼ 0, where dl is

the arc length. This leads to the usual condition

dr=Br ¼ rdθ=Bθ: ðA1Þ

Earth’s magnetic potential U taking into account only the
lowest-order terms for the axisymmetric dipole (g01) and
inclined dipole (g11 and h11) terms is [23]

U ¼ g01ða3=r2Þ cos θ þ ða3=r2Þðg11 cosφþ h11 sinφÞ sin θ;
ðA2Þ

where g01 ¼ −29 496.5 nT, g11 ¼ −1585.9 nT, and h11 ¼
4945.1 nT [57]. Because of Earth’s rotation, a nonrotating
observer co-orbiting with Earth will see φ ¼ ωt where ω is
Earth’s angular speed. Using Eq. (A1) with Br ¼ −∂U=∂r
and Bθ ¼ −r−1∂U=∂θ, we find

Br ¼ 2g01ða=rÞ3 cos θ þ 2ða=rÞ3ðg11 cosφþ h11 sinφÞ sin θ;
ðA3Þ

Bθ ¼ g01ða=rÞ3 sin θ − ða=rÞ3ðg11 cosφþ h11 sinφÞ cos θ;
ðA4Þ

and

dr
r
¼ 2dθ

g01 cos θ þ ðg11 cosφþ h11 sinφÞ sin θ
g01 sin θ − ðg11 cosφþ h11 sinφÞ cos θ

: ðA5Þ

Now since g11=g
0
1 ≈ 0.05 and h11=g

0
1 ≈ 0.17, we may roughly

approximate Eq. (A5) as

dr
r
≈ 2dθfcot θ þ ½ðg11=g01Þ cosφþ ðh11=g01Þ sinφ�csc2θg:

ðA6Þ

Integrating, then exponentiating both sides, and using a
Taylor expansion yields

r ≈ r0 sin2 θ − r0½ðg11=g01Þ cosφþ ðh11=g01Þ sinφ� sin 2θ;
ðA7Þ

where r0 is a constant of integration and φ ¼ ωt. The first
term in Eq. (A7) is identical to the usual equation for the
field lines of an axisymmetric dipole field [9]. The next
term gives the inclined dipole and its rotation with Earth.
An observer rotating with Earth at a particular φ can
interpret what he or she sees as corotating field lines with a
shape specific to that value of φ. An observer looking back
at Earth who could see field lines would see an inclined
dipole rotating with Earth.

APPENDIX B: FAILURE OF THE v = 0 SOLUTION

We demonstrate that the v ¼ 0 solution B0 [Eq. (10)]
is no longer a solution for the magnetically permeable
cylindrical shell once the shell is moving with v ¼ vŷ
in K (Fig. 1). We assume B0 (or, equivalently, A0 with
allowance for gauge ambiguity) remains the solution even
though v ≠ 0 and show that this leads to a contradiction.
When v ¼ 0, we have B∞ðρ ≫ bÞ ¼ B∞x̂ and

E∞ðρ ≫ bÞ ¼ 0 in K. These must continue to hold once
v ≠ 0, since the shell’s distortion of the fields must go to
zero at infinity.
First assume B0ðx; y; z; tÞ to be a solution for the a ≠ 0

cylindrical shell for v ≠ 0. Inserting Eq. (10) into Eq. (7)
requires ∇ × ðv ×B0Þ ¼ 0. But we know by Eq. (21) that
this is false in general. Therefore, B0ðx; y; z; tÞ cannot be a
solution when v ≠ 0.
Rather than assuming a solutionB0ðx; y; z; tÞ, we instead

treat the disturbance in the background field B∞ as moving
together with the cylindrical shell at v. We implement this
in Eqs. (9)–(11) by referring the coordinates of B0 to the K0
system ðx0; y0; z0; t0Þ ¼ ðx; y − vt; z; tÞ. For example, when
v ≠ 0, Eq. (9a) is

B0
0xðρ0 > bÞ ¼ B∞ þ β3ðb=ρ0Þ2 cos 2ϕ0; ðB1Þ

where ρ0 ¼ ðx2 þ y02Þ1=2, ϕ0 ¼ tan−1ðy0=xÞ, and, of course,
y0 ¼ y − vt. Correspondingly, Eq. (18) becomes

A0
0ðρ0 > bÞ ¼ B∞y0 þ β3ðb2=ρ0Þ sinϕ0: ðB2Þ

Henceforth, in this appendix, primed field quantities are
understood to be written in terms of the coordinate y0. In
the limit v → 0, Eqs. (B1), (B2), and their analogs go to
Eqs. (9) to (11) and (18) to (20), as required.
In this appendix only, we make the following simplifying

choice of gauge [33,41]:

A0 → ~A0 ¼ A0 þ∇0
Z

V 0dt0 ðB3aÞ

so that
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V 0 → ~V 0 ¼ V 0 −
∂
∂t0

Z
V 0dt0 ¼ 0: ðB3bÞ

I.e., the corresponding gauge condition is V 0 ¼ 0. Because
V 0 ¼ V − vAy ¼ V since only Az is nonzero, we have
V 0 ¼ V ¼ 0. Henceforth, dropping the tilde onA0, we have

E0 ¼ −∂A0=∂t0: ðB4Þ
Equations (B2) and (B4) give E0ðρ0 > bÞ ¼ 0, so by
Eq. (5), Eðρ > bÞ ¼ vB0xẑ, where B0x is given by
Eq. (9a). But by taking ρ → ∞ in Eq. (9a), this means
E∞ ¼ vB∞ẑ, which contradicts our premise that E∞ ¼ 0
in K. Therefore, Eq. (B2) cannot be a solution for the
magnetically permeable cylindrical shell once v ≠ 0.
But perhaps we can add a piece to A0

0 that preserves B0
0

while giving E∞ ¼ 0. (This will not be a gauge trans-
formation, as we will be explicitly attempting to alter
the field quantity E while preserving B0

0.) We now show
that satisfying these conditions together is impossible so that
there is nomodification of Eqs. (18)–(20) that both maintains
B0 ¼ B0

0 and is consistent with the requirement thatB∞ðρ ≫
bÞ ¼ B∞x̂ and E∞ðρ ≫ bÞ ¼ 0. Whatever term is added to
Eq. (B2) cannot vary with x or y0, or else B0

0 will change, in
contradiction to our premise. If we try instead to add a
spatially constant term vB∞t0 to Eq. (B2) to alter E0 and
therebyE∞, by continuity ofA0 at ρ0 ¼ b and Eq. (B4), J0 ¼
σE0 ¼ −συB∞ẑ ≠ 0 for a ≤ ρ0 ≤ b, which means B0

0ða ≤
ρ0 ≤ bÞ cannot be the solution, again contradicting a premise.
We, therefore, show that B0

0ðx0;y0;z0;t0Þ¼B0
0ðx;y−vt;z;tÞ

cannot be a solution when v ≠ 0. In effect, the “solution”
B0

0 ðx; y − vt; z; tÞ is incompatible with the premise that B∞
does not rotate together with the frame K0.

APPENDIX C: CHOICE OF GAUGE

While the gauge condition Eq. (22) is cited in the
literature [43,44], it is not included in lists of standard
electrodynamics gauges [68]. We, therefore, discuss it
further here and show that it satisfies the requirements
of gauge invariance. A gauge transformation leaves B and
E unchanged provided the transformed vector and scalar
potentials satisfy

~A ¼ Aþ∇χ ðC1Þ
and

~V ¼ V − ∂χ=∂t: ðC2Þ
Now take the divergence of Eq. (C1), multiply it by η, and
add to this Eq. (C2) to obtain

~V þ η∇ · ~A ¼ V þ η∇ ·Aþ ð−∂χ=∂tþ η∇2χÞ: ðC3Þ
The gauge condition Eq. (22), therefore, holds both before
and after the gauge transformation Eqs. (C1) and (C2),
provided χ satisfies the diffusion equation

∂χ=∂t ¼ η∇2χ: ðC4Þ

APPENDIX D: CYLINDRICAL COORDINATE
REPRESENTATION

Some calculations are most easily performed with B0
andB1 in cylindrical coordinates. For convenience, we give
this representation here. We have

Bρ ¼ Bx cosϕþ By sinϕ; ðD1aÞ

Bϕ ¼ −Bx sinϕþ By cosϕ; ðD1bÞ

so that from Eq. (10),

B0ρða ≤ ρ ≤ bÞ ¼ ½β1 − β2ða=ρÞ2� cosϕ ðD2aÞ

and

B0ϕða ≤ ρ ≤ bÞ ¼ ½−β1 − β2ða=ρÞ2� sinϕ: ðD2bÞ

Using Eq. (D2) and v ¼ vŷ ¼ v sinϕρ̂þ v cosϕϕ̂ yields a
simpler expression for Eq. (21):

∇ × ðv ×B0Þ ¼ 2vβ2a2ρ−3½sin 2ϕ ρ̂þ cos 2ϕ ϕ̂�: ðD3Þ

We also have from Eqs. (60) and (62):

B1ρða ≤ ρ ≤ bÞ ¼ −ð1=2ÞRmb−1β2a2ρ−1 sin 2ϕ ðD4aÞ

and

B1ϕða ≤ ρ ≤ bÞ ¼ 0: ðD4bÞ

The first term on the right-hand side of Eq. (85) may then
be evaluated via Eq. (65), and the vector Laplacian in
cylindrical coordinates. The calculation is tedious but
straightforward.
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