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A B S T R A C T

Calculations of the magnetic induction heating of planetary satellites to date have been done using approximate
or numerical models. Here we present analytical formulae that may be used for either conducting metallic
cores (spheres) or conducting water oceans or rock mantles (spherical shells). The formula for the magnetic
induction heating of conducting spheres has been in the classic electromagnetic literature for nearly a century,
but appears to have been overlooked by astrophysicists. Analogous formulae for conducting spherical shells are
derived in this paper. We apply these formulae to calculate induction heating by alternating magnetic fields
as seen in the frame of an orbiting satellite. These alternating fields may arise from inclined or horizontally
displaced planetary magnetic dipoles, as well as eccentric or inclined satellite orbits. We derive analytical
formulae for these, making it easy to investigate quickly the importance of magnetic induction heating for
many different system configurations. Magnetic induction heating of planetary satellites in our current Solar
System appears unimportant for each of these effects, but may have been greater in the past, in exoplanetary
systems, or for other celestial binaries.
1. Introduction

Two forms of electrical heating of celestial objects have been con-
sidered in the literature. The first, the homopolar generator, is an
astrophysical analog to Lorentz-force-driven current flow and ohmic
dissipation in the Faraday disk (Faraday, 1832; Munley, 2004; Chyba
et al., 2015). The second is magnetic induction heating due to eddy
(Foucault) currents arising from the time-varying magnetic field (as
seen in the frame of the secondary) of the primary, according to
Faraday’s law of induction. These two modes have sometimes been la-
beled the transverse magnetic (TM) and transverse electric (TE) modes,
respectively (Colburn, 1980).

Homopolar induction (TM-mode heating) has been explored as a
heating mechanism for Io (Piddington and Drake, 1968; Goldreich and
Lynden-Bell, 1969; Colburn, 1980), Europa (Reynolds et al., 1983; Col-
burn and Reynolds, 1985), Enceladus (Hand et al., 2011), planetesimals
by the T-Tauri Sun (Sonnet et al., 1970), and a variety of astrophysical
binary systems (see Lai, 2012, for a brief review). In this hypothesis
in the case of a planetary satellite, current flows in the ionosphere of
the primary, down a flux tube to the primary-facing equatorial region
of the satellite, through the conducting satellite, and then back to the
primary after exiting the anti-primary equatorial region. The motion of
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the satellite through the plasma in which it is embedded is analogous
to the rotation (in the laboratory frame) of the conducting Faraday disk
past the brushes that electrically connect the disk to an external circuit
at rest in the laboratory. Possibly the analogy is more obviously made
using the linear analog of the homopolar generator (Chyba et al., 2015).

But for each of these satellites, it so far appears likely that the
resulting heating is at best minor compared to the total internal heating.
At Io, the dense plasma likely shunts the circuit around Io itself, yield-
ing little internal Joule heating (Goertz, 1980; Russell and Huddleston,
2000; Saur et al., 2004). At Europa, the current (and so the heating)
is enormously lessened by the resistance of an electrically insulating
ice shell; only if the circuit could connect to the conducting ocean
through cracks in the ice could there be currents sufficient to generate
significant heat (Reynolds et al., 1983). In light of recent observations
of possible plumes at Europa (Roth et al., 2014; Sparks et al., 2016), this
question needs to be re-examined. At Enceladus, currents may be able
to flow through the ‘‘tiger stripes’’ at the south pole, but nevertheless
the resulting Joule heating provides less than one percent of the total
observed heat flux (Hand et al., 2011).

Magnetic induction (TE-mode heating) has been considered as a
potential source of heating for Io (Colburn, 1980), Amalthea (Simonelli,
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1983), and Europa’s and Callisto’s oceans (Khurana et al., 1998), as
well as exoplanets close to their stars (Laine et al., 2008). In the
Jovian system cases, the satellite experiences a time-varying magnetic
field from the primary (Jupiter) due to the tilt of Jupiter’s magnetic
dipole with respect to the planet’s rotation axis. Below we will consider
several other sources of time-varying fields as seen in the frame of the
satellite. Whatever the source of the oscillation in the magnetic flux
density 𝐁, these oscillations lead to an electric field 𝐄 via the Maxwell–
Faraday equation 𝛁×𝐄 = −𝜕𝐁∕𝜕𝑡. Integrating the changing flux over a
relevant surface 𝑆 bounded by a curve 𝐶 (with element of area 𝐝𝐚 and
line element 𝐝𝐥, respectively), and using Stokes’ theorem (applicable
provided there is no jump discontinuity on 𝑆), yields (Giuliani, 2008;
Auchmann et al., 2014; Chyba and Hand, 2016) an electromotive force
𝜀 given by

𝜀 = ∮𝐶
𝐄 ⋅ 𝐝𝐥 = −∫𝑆

𝜕𝐁
𝜕𝑡

⋅ 𝐝𝐚. (1)

This fluctuating voltage in turn results in eddy currents that dissipate
energy in the satellite through ohmic heating.

Colburn (1980) calculated magnetic induction heating for a variety
of sub-surface conductivity models for Io using a numerical integration
outward from satellite radius 𝑟 = 0 over nested spheres, assigning a
small value to 𝐵 = |𝐁| at 𝑟 = 0 and scaling the resulting fields to
match the external boundary conditions for 𝐵. Simonelli (1983) used a
whole-body formula stated by Colburn (without citation or derivation)
in a table caption for a low-conductivity limit. Khurana et al. (1998)
approximated the induction heating in Europa’s and Callisto’s oceans
as analogous to the ohmic loss from a propagating electromagnetic
wave in a waveguide. We show below that the approximation adopted
by Khurana et al. (1998) is correct if the skin depth in the ocean is
small with respect to the thickness of the ocean, but otherwise scales
incorrectly with frequency 𝜔 and ocean conductivity 𝜎.

In all these cases, recourse to exact analytical formulae is clarifying.
At the same time, all these authors correctly concluded that magnetic
induction heating is negligible, so there was no need for them to pursue
better approximations. The value of the exact formulae comes from
their transparency when applied to particular cases and their ease of
applicability to cases that have not previously been considered, either
within our Solar System or in the realm of exoplanets.

2. Induction heating of conducting spheres

Smythe (1939, 1968) derived an exact analytical formula for the
power absorbed by a conducting sphere of uniform conductivity 𝜎
and magnetic permeability 𝜇 = 𝜇𝑟𝜇0 (where 𝜇0 = 4𝜋 × 10−7 H m−1

s the permeability of free space and 𝜇𝑟 the relative permeability)
n an external sinusoidally alternating magnetic field 𝐇 = 𝐁∕𝜇0, by
olving the relevant Poisson equation arising from the Maxwell–Ampère
quation for the azimuthal component of the vector potential. (Smythe,
939 provides this calculation in cgs units; we use here Smythe, 1968,
n which calculations are presented in MKS units.) We give Smythe’s
eneral result, valid for any 𝜇𝑟, in Appendix A. Rony (1964) presented
simpler, analogous derivation for 𝜇𝑟 = 1 that of course agrees with

mythe’s result for this special case. In this case, the joule heating of a
onducting sphere of radius 𝑟0 and conductivity 𝜎 in a field 𝐁 oscillating

with angular frequency 𝜔 is

𝑃sphere =
3𝜋𝑟0𝐵2

𝜇2
0𝜎

𝐺(𝑥), (2)

where

𝐺(𝑥) =
𝑥(sinh 2𝑥 + sin 2𝑥)
cosh 2𝑥 − cos 2𝑥

− 1, (3)

= 𝑟0∕𝛿, and we emphasize that Eq. (2) holds only for the special case
𝑟 = 1. The skin depth 𝛿 gives the e-folding depth into the conductor
or the diffusion of the alternating field 𝐁; it is in general

= 2∕𝜇𝜔𝜎 1∕2 , (4)
2

( ) i
hich becomes 𝛿 =
(

2∕𝜇0𝜔𝜎
)1∕2 for 𝜇𝑟 = 1.

Setting 𝜇𝑟 = 1 is the right choice for rock or ice, but could be
uestioned if we were considering, say, the iron core of a sufficiently
mall satellite. But even here 𝜇𝑟 = 1 is still likely the correct ap-
roximation since 𝜇𝑟 = 1 if the temperature of the core is above the
urie temperature 𝑇𝑐 of iron. For iron 𝑇𝑐 = 1043 K with little pressure
ependence, rising to only about 1053 K at the boundary of Earth’s
uter core (Campbell, 2003), where the pressure is around 140 GPa.
ere we interested in iron cores below 𝑇𝑐 , however, Smythe’s (1968)

ull formula could be employed. In this case, four additional terms
nter into the denominator of the expression for joule heating. We
how in Appendix A that for parameter choices relevant to planetary
atellites, these terms sum to a positive quantity, thereby decreasing
hmic heating below that given by Eq. (2), which assumes 𝜇𝑟 = 1. Since
eating will prove negligible when 𝜇𝑟 = 1, we do not consider the case
𝑟 ≠ 1 further here.

We can then proceed to examine physically relevant limiting cases
f Eqs. (2) and (3). When 𝛿 ≪ 𝑟0 (𝑥 ≫ 1), e.g. for 𝜎 sufficiently large,
q. (3) becomes 𝐺(𝑥) = 𝑥 = 𝑟0∕𝛿 and Eq. (2) yields (Fromm and Jehn,
965):

𝛿≪𝑟0
sphere =

3𝜋𝜔1∕2𝐵2𝑟20
√

2𝜇3∕2
0 𝜎1∕2

, (5)

where the superscript indicates the assumption made to derive Eq. (5)
for Psphere. By Eq. (5), joule heating decreases as 𝜎 increases. Physically
this can be understood by considering the volume distribution of heat-
ing in the sphere. When 𝛿 ≪ 𝑟0, we can approximate 𝐁 as constant over
the skin depth and zero elsewhere in the sphere; this approximation
is good to 𝛿∕2𝑟0. Therefore the heating of the sphere occurs only in
its outermost layer of volume 4𝜋𝑟20𝛿. The volumetric heating in this
outermost layer is then, from Eq. (5),

𝑃 𝛿≪𝑟0
sphere

heated volume
= 3

8
𝜔𝐵2

𝜇0
. (6)

This qualitatively agrees with, but is smaller by a factor of 3 than,
the limit for large 𝜎 that Colburn (1980) found in his numerical
investigations. Eq. (6) shows that the volumetric heating of the heated
volume 4𝜋𝑟20𝛿 becomes independent of 𝜎 as the skin depth gets small.
But the heated volume itself gets smaller according to Eq. (4) as 𝜎
increases, so 𝑃sphere must decrease.

Now consider the limit 𝛿 ≫ 𝑟0 (𝑥 ≪ 1) that might apply for a world
of low conductivity, where the oscillating magnetic field penetrates the
entire satellite with minimal attenuation. In this limit, Eq. (3) becomes
𝐺(𝑥) = 𝑥4∕15, where it is necessary to keep sixth-order terms in the
expansions for the hyperbolic and trigonometric functions in 𝐺(𝑥).
Eq. (2) becomes

𝑃 𝛿≫𝑟0
sphere = (𝜋∕15)𝜎𝜔2𝐵2𝑟50, (7)

so that heating is proportional to 𝜎 when 𝜎 is sufficiently small. Then

𝑃 𝛿≫𝑟0
sphere

heated volume
= 3

20
𝜎𝜔2𝐵2𝑟20, (8)

here the volume of the heated sphere is just (4∕3)𝜋𝑟30. Eq. (8) is within
factor of 2 of the limit Colburn (1980) stated without derivation

or small 𝜎. It is identical to within a numerical coefficient with the
xpression for the induction heating of a bar of square cross section 𝑑2

here 𝑑 is small compared to the skin depth (Williams et al., 1950;
’Handley, 2000).

Eqs. (2), (5) and (7) suggest that induction heating of conducting
pheres is not significant across any reasonable range of satellite param-
ters in our contemporary Solar System, given the strength of planetary
agnetic fields. As an illustration, consider a uniformly conducting

phere in the orbit of Io and let 𝜎 run from, say, 10−6 S m−1 to 107

m−1 (the latter value being about that of the conductivity of pure

ron). Consistent with Io’s orbit around Jupiter (with a magnetic dipole
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Fig. 1. Induction heating of Io, treated as a sphere of uniform conductivity, from Eq. (2) for a range of conductivities, with comparisons for the limiting cases of Eqs. (5) and
(7). For any conductivity, heating appears unimportant.
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inclined by 9.6◦), we take 𝜔 = 1.3 × 10−4 s−1 (Colburn, 1980), the
difference between Jupiter’s rotation frequency and Io’s mean motion.
(Recall that we are working in Io’s frame, so that this difference is
the apparent frequency of Jupiter’s rotating inclined dipole.) We also
have 𝐵 = 1835 sin(9.6◦) nT = 306 nT (Kivelson et al., 1996), and
0 = 1821 km for Io. For specificity, consider Eq. (5) for 𝜎 = 1 ×
06 S m−1, the conductivity appropriate to FeS at a temperature of
900 K and a pressure of 6 GPa (Li et al., 2007). With these values,
sphere = 17 kW, a stunningly small number. (This may be compared
ith the original calculation of tidal heating for Io that gave 1600 GW

or a dissipation factor Q = 100 for Io; Peale et al., 1979.) To test
ensitivity to a different choice of 𝜎, in Fig. 1 we display Eq. (2) for
hese parameters as a function of 𝜎; maximum 𝑃sphere across this range
s only about 60 MW, an insignificant amount of heating. Of course,
he actual satellite Io has a non-uniform interior structure with different
onductivities appropriate to its various regions (Khurana et al., 2011).
owever, since Eq. (5) scales like 𝑟20, treating Io as a sphere of radius
0 = 1821 km will, for a given 𝜎, maximize estimates of induction
eating. Since even these cases (Fig. 1) yield a negligible result, we
an be confident that a more realistic treatment would not change this
onclusion.

. Induction heating of spherical shells

A variety of planetary satellite features are better modeled by spher-
cal shells than by complete spheres, for example conducting water
ceans. If the conducting spherical shell is underlain by a layer of much
ower conductivity, the spherical shell model should apply. Even if the
onducting shell is underlain by another strongly conducting material,
shell model will be applicable if the thickness ℎ of the shell satisfies
≫ 𝛿, where 𝛿 is the skin depth in the shell. Here we outline our

pproach for deriving formulae for the induction heating of spherical
hells, displaying key results; the detailed calculations are performed
n Appendix B.

The power 𝑃 absorbed in a conductor is given by

= 𝐼2𝑅 = 𝜀2𝑅
𝑍2

, (9)

here 𝜀 is the emf induced in the conductor (in our case due to a flux
ensity 𝐁 oscillating at angular frequency 𝜔), the current 𝐼 = 𝜀∕𝑍, and
3

quares are understood to mean the square modulus, e.g. 𝜀2 = 𝜀∗𝜀. Here
= 𝑅 + 𝑖𝜔𝐿 is the conductor’s impedance, with square modulus
2 = 𝑅2 + (𝜔𝐿)2, (10)

ith 𝑅 and 𝐿 the conductor’s resistance and inductance, respectively.
To use Eq. (9) to calculate 𝑃shell, the power absorbed in a conducting

hell, we therefore need 𝜀shell, 𝑅shell, and 𝑍shell. The latter in turn
equires 𝐿shell. The shell’s resistance 𝑅shell is readily calculated, but
alculating 𝐿shell is more challenging. The calculation is not given in
tandard compilations of inductances for different objects and geome-
ries (Rosa and Grover, 1948; Cohen, 1996; Grover, 2009). Perhaps
he closest calculation in the literature of which we are aware is for
he inductance of a spherical solenoid (Wheeler, 1958), but of course
or a solenoid issues of skin depth are irrelevant, so the inductance of
he spherical solenoid cannot be appropriate for a conducting spherical
hell. We calculate 𝑅shell, 𝑍shell, and 𝐿shell in Appendix B.

Results for 𝑅shell and 𝐿shell depend strongly on whether the shell (of
hickness ℎ, say) is thick (ℎ ≫ 𝛿) or thin (ℎ ≪ 𝛿) compared to the
kin depth 𝛿. On physical grounds we expect the thick shell result to
e identical to that for a solid sphere, Eq. (5), and this serves as a check
n our approach.

For a thick (ℎ ≫ 𝛿) shell of radius 𝑟0 and thickness ℎ, we find
Appendix B)
𝛿≪ℎ
shell =

𝜋
2𝜎𝛿

, (11)

𝛿≪ℎ
shell =

√

3𝜋
4

𝜇0𝛿, (12)

and

𝑍2
sphere =

𝜋2𝜔𝜇0
2𝜎

= 4𝑅2
sphere, (13)

where we have dropped the superscript 𝛿 ≪ ℎ to avoid confusion with
the exponent. In addition, we find

𝜀2 = (3∕2)𝜋2𝜔2𝐵2𝑟20𝛿
2, (14)

so that by Eq. (9),

𝑃 𝛿≪ℎ
shell =

3𝜋𝜔1∕2𝑟20𝐵
2

√ 3∕2 1∕2
(15)
2𝜇0 𝜎
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for the thick conducting spherical shell, results identical to those for
the conducting sphere for the case 𝛿 ≪ 𝑟0 (e.g., Eq. (5)).

For a thin (ℎ ≪ 𝛿) shell of radius 𝑟0 and thickness ℎ, we find
(Appendix B)

𝑅𝛿≫ℎ
shell =

𝜋
2𝜎ℎ

, (16)

𝐿𝛿≫ℎ
shell =

√

3𝜋
8

𝜇0𝑟0, (17)

nd
2 = (𝜋2∕2)𝜔2𝐵2𝑟40, (18)

o that by Eq. (9),

𝛿≫ℎ
shell = 𝜋𝜎𝜔2𝐵2𝑟40ℎ

(

1 +
3𝑟20ℎ

2

4𝛿4

)−1

. (19)

If the impedance of the shell is dominated by the resistance (e.g. for
sufficiently low conductivities), Eq. (19) becomes

𝑃 𝛿≫ℎ
shell = 𝜋𝜎𝜔2𝐵2𝑟40ℎ. (20)

If the impedance of the shell is instead dominated by the inductive
reactance (e.g. for very high conductivities), Eq. (19) becomes

𝑃 𝛿≫ℎ
shell = 16𝜋

3
𝐵2𝑟20
𝜇2
0𝜎ℎ

. (21)

. Planetary dipoles and satellite orbits

Seen from an orbiting satellite, a tilted planetary dipole results
n a magnetic field varying sinusoidally along the radial line from
he planet’s center to the satellite. The magnitude of the effect is
roportional to the magnitude of the inclination of the dipole axis. For
n inclination angle 𝜃, this gives an alternating component of 𝐵 equal
o 𝐵 sin 𝜃. For example, 𝜃 = 9.6◦ for Jupiter but 0◦ for Saturn. Here
e consider the effect of tilted dipoles but also other sources of time-
arying 𝐁, and investigate under what conditions these might provide
uantitatively more important sources of induction heating.
Tilted planetary dipoles. Consider applying our results to the Eu-

opan ocean, taken here to be a conducting spherical shell of thickness
= 100 km. For Europa, 𝜔 = 1.6 × 10−4 s−1, 𝐵 = 220 nT for the peak

quatorial amplitude of Jupiter’s oscillating field (Khurana et al., 1998)
nd 𝑟0 = 1560 km. The skin depth of 𝐵 into the ocean, by Eq. (4), is
hen

= 100 km
(

1 S m−1

𝜎

)1∕2
, (22)

Even if Europa’s ocean were salt-saturated, 𝜎 would be less than
20 S m−1 (Hand and Chyba, 2007). For 𝜎 = 10 S m−1, 𝛿 = 32 km,
which we will take as just satisfying the requirement 𝛿 ≪ ℎ necessary
for Eq. (15) to apply. We find 𝑃𝑠ℎ𝑒𝑙𝑙 = 7 MW, consistent with the results
found by Khurana et al. (1998) and quite negligible.

Could heating be increased for oceans of much lower conductivity?
Consider instead 𝜎 = 10−1 S m−1, for which 𝛿 = 1.0 × 103 km, which
satisfies 𝛿 ≫ ℎ. In this case Eq. (19) applies. In fact, the resistance term
in the denominator of Eq. (19) dominates the inductive reactance term
by two orders of magnitude in this case, so we may use Eq. (20), and we
find 𝑃𝑠ℎ𝑒𝑙𝑙 = 330 kW, again a negligible amount of heating. Decreasing
𝜎 in Eq. (20) will, of course, only make 𝑃𝑠ℎ𝑒𝑙𝑙 smaller still.

Horizontally offset planetary dipoles. Seen from an orbiting satel-
lite, a tilted planetary dipole results in a magnetic field varying sinu-
soidally along the radial line from the primary’s magnetic dipole to the
satellite. Planetary dipoles may also appear to be horizontally offset
from the planet’s rotation axis; for example, Jupiter’s dipole may be
modeled as an tilted dipole that is horizontally offset by a distance
𝑅ℎ = 0.13𝑅𝐽 (NSSDC, 2014). Since dipole magnetic fields fall off
with the cube of the distance, this means that an orbiting satellite
4

will experience a component of the planet’s magnetic field normal to
the orbit of the satellite (taking the satellite to orbit in the planet’s
equatorial plane) that varies sinusoidally with the sidereal period. If the
magnitude of the planet’s magnetic flux density normal to the satellite’s
orbit is 𝐵, the amplitude of the sinusoidal variation is 3(𝑅ℎ∕𝑎), where
𝑎 is the satellite’s semi-major axis, and we have assumed 𝑅ℎ ≪ 𝑎. That
is, for a horizontal offset 𝑅ℎ, this gives an alternating component of 𝐵
equal to 3(𝑅ℎ∕𝑎)𝐵.

Consider for specificity this effect at Jupiter’s moon Io. With 𝑅𝐽 =
71,398 km and 𝑎 = 5.91𝑅𝐽 (NSSDC, 2014), this gives an alternating
component of 𝐵 equal to 3(𝑅ℎ∕𝑎)𝐵 = 0.066(1835 nT) = 121 nT. The
magnitude of this effect is a bit more than a third as great as that due
to Jupiter’s dipole’s tilt, which yields (1835 nT) sin 9.6◦ = 306 nT, with
eddy currents that run perpendicular to those set up by the dipole’s tilt.

Eccentric satellite orbits. As a satellite travels in an orbit with
eccentricity 𝑒, it periodically moves from apoapse to periapse, moving
from a maximum distance (1 + 𝑒)𝑎 to a minimum distance (1 − 𝑒)𝑎 from
its primary. Since the magnetic field strength falls off with the cube of
the distance, we can approximate this effect (as seen in the frame of
the satellite) as a magnetic field that is fluctuating with amplitude 3𝑒
about its value at a distance 𝑎 from the primary. That is, for example,
the difference in magnetic field strength at the apoapse distance (1+𝑒)𝑎
compared to the average distance 𝑎 is just 𝑎−3 − [(1 + 𝑒)𝑎]−3 ≈ 3𝑒𝑎−3,
provided 𝑒 ≪ 1. For a satellite orbit with eccentricity 𝑒, this gives
an alternating component of 𝐵 equal to 3𝑒𝐵. For the example of Io,
for which e=0.004 (NSSDC, 2014), 3𝑒𝐵 = 22 nT. Heating therefore
scales proportionally to 𝑒2. The relevant frequency for this case (and
the inclination case below) is just the orbital mean motion 𝑛.

Inclined satellite orbits. A magnetic dipole varies in the polar an-
le direction like sin 𝜃. A satellite in a near-equatorial orbit with a small
nclination 𝑖 will therefore experience, around its orbit, an alternating
omponent of 𝐵 that varies from 𝐵 sin(𝜋∕2− 𝑖) = 𝐵 cos(−𝑖) = 𝐵−𝐵(𝑖2∕2)

to 𝐵 around a quarter of an orbit. However, 𝑖2∕2 for typical satellite
orbits is very small; e.g. for Io with 𝑖 = 0.04◦, 𝑖2∕2 = 2 × 10−7, and
(barring satellites with high-inclination orbits) the effect is negligible.

5. Conclusion

Magnetic induction heating of planetary satellites may occur due
to inclined or horizontally offset planetary dipoles, or due to eccentric
or inclined satellite orbits. Induction heating of conducting spheres or
spherical shells may be evaluated using analytical formulae that come
out of the classic electromagnetism literature (spheres) or are derived
here (spherical shells). In the case of highly conductive spheres or
spherical shells, volumetric heating is limited due to the oscillating
magnetic field’s limited penetration into the conductor. In the case of
a low conductivity conductor, the inductive reactance becomes very
large. For the effects considered here, magnetic induction heating
appears to be negligible for planetary satellites in our current Solar
System.

However, we have provided formulae that can be applied either to
earlier periods in Solar System history, to exoplanet systems, or to other
celestial binaries, where it is possible for induction heating to be of
greater significance—though in fact, this remains difficult to achieve.
As an illustration, consider a Europa-like moon of radius 2000 km in
orbit around a Jupiter-like primary of rotation period 10 h. Endow the
moon with a conducting ocean of thickness ℎ = 10 km and 𝜎 = 1
S/m, experiencing a time-varying (due to dipole tilt) magnetic field
of 2 × 10−5 T. Such a field can be achieved for a Jupiter-like primary
provided that the moon is orbiting closer than Io, and/or the primary’s
magnetic dipole is tilted more than that of Jupiter, and/or the primary
has a larger intrinsic magnetic field than that of Jupiter. For these
choices, by Eq. (19) the satellite’s ocean would experience about 1 TW
of induction heating. A remarkable property of induction heating due to
tilted or offset planetary dipoles is that the effect is independent of the
eccentricity or inclination of the satellite orbit, so that circularization
of the orbit will not affect the heating. This of course is quite distinct
from the strong dependence (e.g., Chyba et al., 1989) of tidal heating
on orbital eccentricity and inclination.
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Appendix A. Induction heating for a conducting sphere of arbi-
trary magnetic permeability

Smythe (1968) derives a formula for the joule heating of a conduct-
ing sphere of arbitrary magnetic permeability. (See Smythe, 1939, for
this formula in cgs units.) He finds:

𝑃sphere =
3𝜋𝜎𝜇2

𝑟𝜇
2
0𝜔

2𝑟50𝐵
2{𝑥[sinh(2𝑥) + sin(2𝑥)] − cosh(2𝑥) + cos(2𝑥)}

(𝜇𝑟 − 1)2𝜇2
0𝑀 + (𝜇𝑟 − 1)𝜇0𝑁 + 4𝜇2

0𝑥
4[cosh(2𝑥) − cos(2𝑥)]

,

(A.1)

here

= (2𝑥2 + 1) cosh(2𝑥) + (2𝑥2 − 1) cos(2𝑥) − 2𝑥[sinh(2𝑥) + sin(2𝑥)], (A.2)

𝑁 = 4𝜇0𝑥3[sinh(2𝑥) − sin(2𝑥)], (A.3)

𝑥 = 𝑟0∕𝛿, and 𝛿 is given by Eq. (4). When 𝜇𝑟 = 1, Eq. (A.1) collapses to
Eq. (2).

Now consider the case 𝜇𝑟 ≠ 1 in Eq. (A.1). In the context of planetary
atellites, this might hold for, say, an iron core that somehow remained
elow the Curie temperature. In any such case 𝜇𝑟 ≫ 1, and 𝜇 and
contribute to making 𝛿 in Eq. (4) very small compared with any

lausible value of 𝑟0. We therefore have 𝑥 ≫ 1, and Eq. (A.1) becomes

sphere =
3𝜋𝜎𝜇2

𝑟𝜇
2
0𝜔

2𝑟50𝐵
2

2𝜇2
𝑟𝜇

2
0𝑥 + 4𝜇𝑟𝜇2

0𝑥
2 + 4𝜇2

0𝑥
3
, (A.4)

where we have also used 𝜇𝑟 ≫ 1. Using 𝑥 = 𝑟0∕𝛿 and Eq. (4), we see
that if only the third term in the denominator were present, Eq. (A.4)
would be larger than Eq. (5) by a factor

√

𝜇𝑟, which might be ∼ 102

or an iron core. In this case 𝑃sphere remains negligible. The remaining
wo terms in the denominator in Eq. (A.4) are both positive, so can
nly decrease 𝑃sphere further compared to this estimate. Therefore even
f we were to have a world where an iron core were below the Curie
emperature, this still would not lead to significant magnetic induction
eating of that core.

ppendix B. Calculations for spherical shells

Inductance 𝐿 is defined by the relation

𝛷 = 𝐿𝐼, (B.1)

where the magnetic flux through a surface 𝑆 with area element 𝐝𝐚 is

= ∫𝑆
𝐁 ⋅ 𝐝𝐚 (B.2)

nd 𝐼 is the total current. For identical currents, the inductance 𝐿 =
∕𝐼 for a spherical shell differs from that for the solid sphere by the

atio of the areas penetrated by 𝐁 that contribute to the integral in
q. (B.2). Our approach will be to calculate 𝐿 using Eq. (2) and
5

sphere
hen to determine 𝐿shell from 𝐿sphere by taking the appropriate area
atio.

First, then, we calculate 𝐿sphere – a result that, like that for a
pherical shell, is not to be found in the compilations of inductances
or different objects and geometries (Rosa and Grover, 1948; Grover,
009). We begin by calculating the emf for the sphere. Once we have
he emf, we calculate the sphere’s resistance and use Eqs. (9) and (10)
o solve for 𝐿sphere in terms of 𝜀sphere, 𝑅sphere, and 𝑃sphere. We know 𝑃sphere
rom Eq. (2), or Eqs. (5) and (7) in the appropriate limits.

Consider a magnetic flux density

= 𝐵𝑒−𝑖𝜔𝑡�̂� (B.3)

ncident on a conducting sphere of radius 𝑟0, conductivity 𝜎 and mag-
etic permeability 𝜇0. We use the usual spherical coordinate (𝑟, 𝜃, 𝜑) and
ylindrical coordinate (𝜌, 𝜙, 𝑧) definitions and relations. The sinusoidal
scillations drive alternating currents that run azimuthally around the
phere. The flux density 𝐁 falls off exponentially into the sphere with a
kin depth given by Eq. (4). We first calculate the emf for one azimuthal
ing at colatitude 𝜃 in the limit 𝛿 ≪ 𝑟0. Eq. (1) gives:

ring = −𝑖𝜔∫

2𝜋

0 ∫

0

𝑟0 sin 𝜃
𝐵𝑒−𝑖𝜔𝑡𝑒−(𝑟0−𝑟)∕𝛿𝜌𝑑𝜙𝑑𝜌 = −2𝜋𝑖𝜔𝐵𝑒−𝑖𝜔𝑡𝑟0𝛿 sin

2 𝜃,

(B.4)

here we have used 𝑟 = 𝜌∕ sin 𝜃 to evaluate the integral. This same
esult can be obtained from Eq. (1) by making the approximation that
is uniform across the outer layer 𝛿 of the sphere and 0 within (Wouch

and Lord, 1978). Then

𝜀2sphere = 𝜀ring𝜀
∗
ring =

3
2
𝜋2𝜔2𝑟20𝛿

2𝐵2 =
3𝜋2𝜔𝑟20𝐵

2

𝜇0𝜎
, (B.5)

where we have averaged over 𝜃 over the entire sphere using (1∕𝜋)
∫ 𝜋
0 sin4 𝜃 𝑑𝜃 = 3∕8 and for the final equality used Eq. (4) with 𝜇 = 𝜇0.

The resistance 𝑅sphere may be calculated from the definition for
resistance

𝑅 = ∮
𝑑𝑙
𝜎𝐴

, (B.6)

where 𝑑𝑙 is the current differential path length and 𝐴 the cross-sectional
rea of that path. To calculate 𝑅sphere for azimuthal currents running
bout the 𝛿 ≪ 𝑟0 sphere, we put 𝐴 = 𝜋𝑟0𝛿, and calculate the average
ircumference of an azimuthal current path to be

̄ = 1
𝑟0 ∮

𝑟0

0
2𝜋𝜌𝑑𝑧 = 1

𝑟0 ∮

𝑟0

0
2𝜋(𝑟2 − 𝑧2)1∕2𝑑𝑧 =

𝜋2𝑟0
2

. (B.7)

Then Eq. (B.6) gives

𝑅𝛿≪𝑟0
sphere =

�̄�
𝜎𝐴

= 𝜋
2𝜎𝛿

= 𝜋
2

(𝜔𝜇0
2𝜎

)1∕2
. (B.8)

Equating Eqs. (5) and (9) using Eqs. (4), (B.5) and (B.8) then gives
for the impedance of the 𝛿 ≪ 𝑟0 sphere

𝑍2
sphere =

𝜋2𝜔𝜇0
2𝜎

= 4𝑅2
sphere, (B.9)

or |𝑍sphere| = 2𝑅sphere. Finally, using Eqs. (10), (B.8) and (B.9) to solve
for 𝐿sphere, we find

𝐿𝛿≪𝑟0
sphere =

√

3
𝑅𝛿≪𝑟0
sphere

𝜔
=

√

3𝜋
4

𝜇0𝛿 = 𝜋
2

(

3𝜇0
2𝜔𝜎

)1∕2
. (B.10)

ince 𝜔𝐿𝛿≪𝑟0
sphere =

√

3𝑅𝛿≪𝑟0
sphere, the impedance of the solid conducting

sphere is slightly dominated by its inductive reactance, but the re-
sistance and inductive reactance are comparable in magnitude. This
explains why Wouch and Lord (1978) were able to come within a small
factor of the correct answer for inductive power dissipation in a 𝛿 ≪ 𝑟0
conducting sphere, Eq. (5), despite ignoring the inductive reactance of

the sphere.
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We now determine 𝐿shell from 𝐿sphere by taking area ratios. For
spherical shells of radius 𝑟0 with thickness ℎ, we consider thick (ℎ ≫ 𝛿)
and thin (ℎ ≪ 𝛿) shells. The relevant areas threaded by the magnetic
field are identical for the 𝛿 ≪ 𝑟0 sphere and the 𝛿 ≪ ℎ thick shell, so
the inductance for the thick shell is just

𝐿𝛿≪ℎ
shell =

√

3𝜋
4

𝜇0𝛿. (B.11)

imilarly, it is clear that the calculations for 𝑅, 𝑍, and 𝜀 are identical
n the two cases. Therefore 𝑃 𝛿≪ℎ

shell = 𝑃 𝛿≪𝑟0
sphere as well.

The inductance for the thin (𝛿 ≫ ℎ) shell is greater than that for
he solid sphere by the ratio of the areas penetrated by 𝐁, that is, by
𝑟20∕2𝜋𝑟0𝛿 = 𝑟0∕2𝛿. Then, by Eq. (B.11),

𝛿≫ℎ
shell =

√

3𝜋
8

𝜇0𝑟0. (B.12)

Calculating the resistance of the thin shell from Eq. (B.6) proceeds
s for the 𝛿 ≪ 𝑟0 sphere or for the thick shell case except that now the
ross-sectional area 𝐴 = 𝜋𝑟0ℎ. We therefore have
𝛿≫ℎ
shell =

𝜋
2𝜎ℎ

. (B.13)

so
𝑅𝛿≫ℎ
shell

𝜔𝐿𝛿≫ℎ
shell

= 2𝛿2
√

3𝑟0ℎ
. (B.14)

y Eqs. (10) and (B.14), whether the impedance for the shell is dom-
nated by the resistance or the inductive reactance depends on how
2∕𝑟0ℎ compares to 1. By assumption for the thin shell, 𝛿∕ℎ ≫ 1, but
e could simultaneously have 𝛿∕𝑟0 ≪ 1, so the answer is unclear and
ill depend on the details of the system. From Eqs. (10), (B.12) and

B.13),

𝑍𝛿≫ℎ
shell )

2 =

[

( 𝜋
2𝜎ℎ

)2
+ 3

(

𝜋𝑟0
4𝜎𝛿2

)2
]

. (B.15)

Calculating the emf for the thin shell proceeds analogously to the
alculation for Eq. (B.4), so that

ring = −𝑖𝜔∫

2𝜋

0 ∫

0

𝑟0 sin 𝜃
𝐵𝑒−𝑖𝜔𝑡𝜌𝑑𝜙𝑑𝜌 = −𝜋𝑖𝜔𝐵𝑒−𝑖𝜔𝑡𝑟20 sin

2 𝜃, (B.16)

nd
2
ring = (𝜋2∕2)𝜔2𝑟40𝐵

2. (B.17)

By Eqs. (9), (B.13) and (B.15),

𝛿≫ℎ
shell = 𝜋𝜎𝜔2𝐵2𝑟40ℎ

(

1 +
3𝑟20ℎ

2

4𝛿4

)−1

. (B.18)

If the impedance of the shell is dominated by the resistance, Eq. (B.18)
becomes

𝑃 𝛿≫ℎ
shell = 𝜋𝜎𝜔2𝐵2𝑟40ℎ. (B.19)

If the impedance of the shell is instead dominated by the inductive
reactance, Eq. (B.18) becomes

𝑃 𝛿≫ℎ
shell = 16𝜋

3
𝐵2𝑟20
𝜇2
0𝜎ℎ

. (B.20)

In this limit, the power dissipated in the shell is independent of 𝜔, a
surprising result. However, only values of 𝜔 satisfying two simultaneous
constraints are consistent with Eq. (B.20): 𝜔 must fulfill the ‘‘thin
shell’’ requirement ℎ ≪ 𝛿 as well as the condition (𝜔𝐿shell)2 ≫ 𝑅2

shell.
Requiring these two constrains simultaneously and writing the period
of oscillation of 𝐁 as 𝑇 = 2𝜋∕𝜔 leads to

𝜋𝜏𝐷 ≪ 𝑇 ≪

√

3𝜋
2

𝑟0
ℎ
𝜏𝐷, (B.21)

where

𝜏 = 𝜎𝜇 ℎ2 (B.22)
6

𝐷 0
is just the characteristic diffusion time required for the magnetic flux
to diffuse into a shell of thickness ℎ. If the oscillation period of 𝐁 is

uch longer than the diffusion time into the shell and much shorter
han the diffusion time scaled by the factor 𝑟0∕ℎ, induction heating

is independent of 𝜔, a result that could be of interest in laboratory
induction heating of metals (Rony, 1964; Wouch and Lord, 1978).
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