Energy for microbial life on Europa

A radiation-driven ecosystem on Jupiter's moon is not beyond the bounds of possibility.

The planet Jupiter's moon Europa may harbour a subsurface water ocean¹⁻³, but estimates of the available free energy have not been encouraging for supporting life^{1,4,5}. Here I show that disequilibrium chemistry in the ocean's ice cover, driven by charged particles accelerated in Jupiter's magnetosphere, should produce enough organic and oxidant molecules to fuel a substantial Europan biosphere. Microbial life could exist in concentrations detectable by surface landers able to filter meltwater from Europa's ice.

Europa's putative ocean lies beneath an ice layer too thick to permit photosynthesis¹. Hydrothermal vents may or may not exist. As terrestrial hydrothermal ecology depends largely on transported surface oxidants, it has been suggested that these are unlikely to exist on Europa⁵. Some chemoautotrophic metabolism might occur, for example in methanogenesis from H₂ reacting with outgassed CO₂. But if carbon is outgassed on Europa as methane⁵, then most metabolic pathways operating on Earth may be denied to organisms inhabiting an ice-covered ocean on Europa⁵. I suggest instead that a radiation-driven ecosystem could exist, and calculate the lower limits on its biomass by reference to terrestrial analogues.

A 4.25-mm spectral feature may be due to CO_2 in Europa's ice layer⁶. Oxidants and organics should both be produced in H_2O/CO_2 ices through radiation chemistry⁷⁻⁹ and be retained in the ice matrix above normal sublimation temperatures by hydrogen bonding^{7,8}. Substantial radiation production extends down to about 1 mm (for a density, r, of about 1 g cm^{1 3}) (ref. 8), or to about 1 cm for r 0.1 g cm^{1 3}. Sputtering removes 1 mm (r 1 g cm^{1 3}) from the surface in roughly 5,000 yr (ref. 9). As the surface sputters away, the irradiated layer maintains a steady-state depth of 1 mm.

Charged-particle interactions with water should produce molecular oxygen, hydrogen peroxide and several other oxidants in comparable abundance⁷. Hydrogen peroxide has been detected¹⁰ on Europa at concentrations of 0.13% by number relative to H₂O. This concentration should hold throughout the top 1 mm, giving a column density of about 42 10^{18} H₂O₂ molecules cm^{1 2}.

Cratering does not alter this model. The Europan crust appears to recycle on a 10^7 -yr timescale¹¹. Over 10^7 yr, the turnover depth due to impacts is expected to be 1–10 cm (ref. 12), which will be sputtered away in only about 10^5 yr.

Spectroscopy of Jupiter's moon Callisto suggests that CO_2 is present at ` 0.5 wt%.

Figure 1 Jupiter's moon Europa is covered in ice, beneath which there may lie an ocean. Calculations suggest that, even without photosynthesis or hydrothermal vents, it could support life.

Europa's 4.25-mm spectral feature is 10% of continuum globally, compared to a band strength of 25% for Callisto⁶. Assuming a linear relationship between CO₂ concentrations and band strength for this unsaturated band suggests that CO₂ is present in Europan ice at 0.2 wt% (T. McCord, personal communication). CO₂ in the upper 1 mm of Europa's surface will experience 30 eV AMU¹, integrating the flux⁷ of 32 10^{13} eV cm^{1 2} s^{1 1} over 5,000 yr.

Radiation should drive cycling among CO₂, CO and organics in the ice^{7–9}. Organic groups may have been observed⁶. Laboratory irradiation of H₂O/CO₂ ices produces a dose-dependent CO/CO₂ ratio that is independent of the H₂O/CO₂ ratio¹³. Relative organic production may be calculated by comparing *G* values (molecules produced per 100 eV) for CO to those for organics⁷. At 30 eV AMU^{1–1}, CO/CO₂ 0.3 (ref. 13). Formaldehyde and other simple organic species are produced as well. *G*(CO)/*G*(HCHO)4 9 (ref. 7), so HCHO should be ' 32 10^{1–5} by number in the upper 1 mm, corresponding to a column density, *h*, of about 82 10¹⁶ molecules cm^{1–2}.

Organics and oxidants in Europa's crust are biologically relevant only if they reach the ocean. Crustal recycling mechanisms are unclear^{2,3}. Chaos regions may form by melt-through³. If resurfacing were primarily due to melt-through, about 12 10^{12} g HCHO, comparable amounts of other organics, and $^{\circ}$ 72 10^{13} g H₂O₂ would mix into the ocean every 10^7 yr. The H₂O₂ in solution would decompose into H₂O and O₂ with a half-life of $^{\circ}$ 10 yr.

A putative microbial ecology on Europa could therefore be powered by the reaction HCHO& $O_2 \rightarrow H_2O+CO_2$. The terrestrial soil bacterium *Hyphomicrobium* can live on HCHO as its sole carbon source¹⁴. Terres-

trial methanotrophs obtain their energy by first oxidizing CH_4 to HCHO, then to HCOO¹ and HCO¹₃. Oxidation of HCHO in these organisms yields an energy e4 4.7 eV per molecule¹⁴. The chemical energy available by melting the upper 1 mm of Europa's crust into the ocean is therefore he 42 10¹⁷ eV cm¹². If 10% of available chemical energy were used for biosynthesis, a typical terrestrial efficiency, w, for microbial biomass (dry weight) production is w 22 10¹²¹ g eV¹¹ (ref. 4). Biomass production on Europa would then be hew4 82 10¹⁴ g cm¹². Taking the dry mass of an aquatic cell¹⁵ to be 22 10¹¹⁴ g, this would give 42 10¹⁰ cells cm¹².

If Europa's crust is recycled into the ocean over 10^7 yr, net Europan cell synthesis is $dN/dt 12 \ 10^{21}$ cells yr^{1} , where *N* is the number of cells. The steady-state biomass is given by the product of dN/dt and the biological turnover time *t*. Adopting a turnover time appropriate for Earth's deep biosphere¹⁵, *t* 12 10³ yr, *N* 12 10²⁴ cells, or ' 22 10¹⁰ g. If biomass were not limited by energy, but instead by carbon available from HCHO alone, *N* would be roughly 10³ times smaller.

Radiation products might instead mix into Europa's ocean in sudden localized melting events analogous to Conamara chaos³. The mixing timescale can be estimated by comparing the energy flux from Europa's silicate/metal interior¹ to that required to melt the final 1 mm of ice: the required timescale is about 0.1 yr (probably an upper limit as melting events may involve larger-than-average local heat fluxes).

For an event of Conamara's area³, about 10^4 km², a microbial mass *M* hew 2 10^4 km² 82 10^{10} g, or 42 10^{24} cells could bloom over ' 0.1 yr, which is more than could be supported in steady state. This is ' $10^{1.4}$ of the Earth's oceanic prokaryotic population¹⁵. Microbial blooms could occur wherever Europa's surface communicated with its ocean — at chaos regions or along active cracks, for example. Any coloration or spectral features of such blooms after radiation processing could be explored by comparison with terrestrial analogues⁵.

Europan microbes would lie dormant and drift between melt-through or cracking events. There are at least ten chaos regions of $\cdot 10^4$ km², or at least one of $\cdot 10^5$ km² (ref. 3), and perhaps thousands of small melt-through events on Europa's surface³. If so, they probably occur frequently.

For an ocean about 100 km deep¹⁻³, average cell densities could be as high as 1 cell cm^{1} ³. If this water erupted to the

brief communications

surface and froze, instruments being developed by NASA (P. Grunthaner, personal communication) could detect signs of life in ` 10 litres of melted and filtered surface ice. Ice from melt-through blooms may contain more cells, reducing melting requirements.

These calculations indicate that a particular radiation-driven ecosystem is plausible, quantifiable using our current knowledge of Europa: others are possible. Neither photosynthesis nor hydrothermal vents need be postulated. But only direct exploration will reveal whether life on Europa actually exists. **Christopher F. Chyba**

SETI Institute, 2035 Landings Drive, Mountain View, California 94043, USA, and Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94035, USA e-mail: chyba@seti.org

Physiology

A function for guttural pouches in the horse

Athletic animals must keep their brains cool during exertion because this organ can be damaged irreversibly by hyperthermia. But how horses do this has remained a mystery, as they don't appear to have thermoregulatory dervices like those found in other animals. They do, however, have a unique anatomical arrangement of their internal carotid arteries, which supply blood to the brain: these are enveloped by a pair of airfilled guttural pouches. Here we show that horses use their guttural pouches to cool these important arteries during exercise, keeping the brain from overheating.

The guttural pouches are auditory-tube diverticula that contain about 300–500 ml of air. They are found in odd-toed hoofed animals, hyraxes¹, some bats and a South American forest mouse², and are susceptible to potentially life-threatening diseases from bacterial and fungal infections.

Their anatomical association with the upper respiratory tract suggests that the horse's guttural pouches might function during selective brain-cooling to maintain blood carried by the internal carotid arteries (ICA) at a temperature below the core temperature during hyperthermia. Inflowing arterial temperature has the greatest effect on the brain above 40 °C (ref. 3). Other selective brain-cooling devices include the carotid rete mirabile, which horses do not have, and a mechanism for direct cooling between the brain and cranial venous sinuses³.

Selective brain-cooling in horses is all but abolished by a tracheostomy⁴. The blood to the horse's brain is supplied mainly by the ICA, but also by the occipital and vertebral arteries⁵. The extracranial portion of the

- Reynolds, R. T., Squyres, S. W., Colburn, D. S. & McKay, C. P. Icarus 56, 246–254 (1983).
- 2. Pappalardo, R. T. et al. J. Geophys. Res. 104, 24015–24055 (1999).
- 3. Greenberg, R. et al. Icarus 141, 263–286 (1999).
- Jakosky, B. M. & Shock, E. L. J. Geophys. Res. 103, 19359–19364 (1998).
- 5. Gaidos, E. J. et al. Science 284, 1631–1633 (1999).
- 6. McCord, T. B. et al. J. Geophys. Res. 103, 8603–8626 (1998).
- Delitsky, M. L. & Lane, A. L. J. Geophys. Res. 102, 16385–16390 (1997).
- Delitsky, M. L. & Lane, A. L. J. Geophys. Res. 103, 31391–31403 (1998).
- Johnson, R. E. in Solar System Ices (eds Schmitt, B. et al.) 303–334 (Kluwer, Dordrecht, 1998).
- 10. Carlson, R. W. et al. Science 283, 2062–2064 (1999).
- Zahnle, K., Dones, L. & Levison, H. F. *Icarus* 136, 202–222 (1998).
 Varnes, E. S. & Jakosky, B. M. in *Lunar Planet. Sci.* abstr. 1082
- (Lunar and Planetary Institute, Houston, 1999) (CD-ROM).
 13. Brucato, J. R., Palumbo, M. E. & Strazzulla, G. *Icarus* 125, 135–144 (1997).
- Madigan, M. T. et al. Brock Biology of Microorganisms (Prentice Hall, Upper Saddle River, New Jersey, 1997).
- Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

ICA is enveloped by the thin (45–200 mm) mucous membrane of the guttural pouch's medial compartment (Fig. 1).

We measured the temperature of air from the guttural pouch as well as of blood from the ICA in four horses by using fine thermocouples (response times, 0.1 and 0.002–0.04 s) surgically implanted on the ICA at three sites corresponding to sites before, midway and beyond the guttural pouch, respectively (trifur, mid and f. lacerum) (Fig. 1a). At rest, trifur was significantly cooler than rectal temperature and mid (trifur, 0.565 0.02 °C less than rectal; mid, 0.25 0.03 °C more than trifur; results are combined mean5 standard error). It has been reported that a horse's common carotid arteries are cooled⁶, presumably by heat loss from the pulmonary circulation and the proximity of the arteries to the trachea and skin. When the horse is resting, mid blood is warmed and f. lacerum blood cooled. Other surrounding tissues, notably the salivary glands and neck muscles, which are at core temperature, influence the warming of mid blood. Adjacent to f. lacerum is the extracranial ventral petrosal venous sinus, which is cooler than the resting core temperature⁴.

During trotting and cantering, the temperature at trifur rises, whereas that at mid and f. lacerum increases little by comparison (Fig. 1b–d). After prolonged cantering, the temperatures of guttural-pouch air and f. lacerum are similar. The rectal temperature differs from that of the ICA throughout, probably because of the lag phase between the horse's rectum and core⁴.

Guttural-pouch air temperature varied little with exercise (37.65 0.03 °C at rest, 37.55 0.05 °C trotting and 37.65 0.08 °C cantering), as did rectal temperature (38.35 0.01 °C at rest, 38.45 0.04 °C trotting and 38.75 0.1 °C cantering). Environmental air temperatures (and relative humidity) were 18.55 3.5 °C (465 5%) at rest, 18.35 3.0 °C (455 4%) trotting and 18.15 2.7 °C (475 5%) cantering. Exercise trials without the guttural-pouch temperature probe followed the same significant trends of cooling of the ICA.

Cool air in the guttural pouch would drive heat transfer from the passing ICA, and this is the only structure in this area

Figure 1 Guttural pouches act to cool the horses' brain. **a**, The arrangement of guttural pouches and internal carotid arteries (ICA) in the skull, and the position of the temperature probes used to measure blood temperature. **b–d**, Combined averaged temperatures (5 s.e.) for two trials in all four horses: **b**, at rest; **c**, trotting; **d**, cantering.

🟁 © 2000 Macmillan Magazines Ltd