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Impact Deflection of
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Nuclear explosions, and a wide variety of technologies not yet realized, have been
proposed to deflect asteroids away from collision with Earth. In contrast, this article
presents realistic models for simple kinetic energy impact deflection, using the actual or-
bital elements of 795 catalogued Potentially Hazardous Asteroids, and impactor masses
launched to intercept trajectories by Atlas V HLV rockets or equivalent. The authors
take asteroid diameter, density, cratering characteristics, and Earth-collision lead time
as parameters whose influence is to be investigated. Assuming asteroids of rocklike
density, the article finds deflection off of Earth-collision to be achievable given 5-year
lead time with a single kinetic energy intercept for 100% of 250 m diameter PHAs, 20-
year lead with a single intercept for 93% of 500 m PHAs, 20-year lead with 5 and 10
intercepts, respectively, for 55% and 94% of 1 km PHAs, or 100-year lead with 1 and 2
intercepts, respectively, for 55% and 94% of 1 km PHAs. Considering likely future lead
times for Near-Earth Objects, simple impact deflection using current launch vehicles
is therefore a viable strategy for up to kilometer-diameter asteroids. This method has
important advantages over other proposals: it requires no new technologies, would not
require development or testing of nuclear warheads, and would likely be the least costly,
least risky, and fastest to effect.
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BACKGROUND

Many techniques for deflecting asteroids away from collision with Earth
have been proposed, including nuclear explosions,1,2 nuclear powered ion
propulsion,3 solar sails,4 mass drivers,4 gravity tugs,5 and more exotic
technologies.6 However, deflection by simple impact,2,4 were it demonstrated to
be viable for large asteroids, would have important advantages over other pro-
posals: it would require no new technologies and would likely be the least costly,
least risky, and fastest to effect. It would also be far less politically difficult to de-
velop and test than any option involving nuclear warheads. This article presents
realistic models for kinetic energy impact deflection, using the actual orbital
elements of 795 catalogued Potentially Hazardous Asteroids (PHAs).7 The au-
thors take asteroid diameter, density, cratering, and Earth-collision warning
(lead) time as parameters whose influence is to be investigated. As the cata-
logue of the Near-Earth Object (NEO) population orbits expands, lead times
for any discovered Earth-colliding objects are likely to be one or two centuries,
the time horizon out to which NEO orbits may typically be reliably projected.8

Simple impact deflection is then a viable strategy even for kilometer-diameter
asteroids.

Impacts as large as that of the ∼10 km-diameter K/T bolide that struck
Earth with ∼108 mt of energy occur every ∼100 million years.9 In 1908 an as-
teroid with diameter ∼60 m exploded over Tunguska Siberia, releasing ∼10 mt
of energy, equivalent to a large nuclear warhead10; impacts of this magnitude
occur once every ∼1,000 years.11 In between the mass extinction and local de-
struction impact classes is the global catastrophe class of 1 to 2 km objects,
impacting Earth once every ∼1 million years.8

Efforts to detect, catalogue, and track the NEO population are well under
way, with ∼85% of the estimated 1,000 NEOs >1 km in diameter discovered by
28 November 2006.12 The survey is complete for NEOs with diameters >5 km,
and for as long as orbits can be reliably predicted (about a century, with sub-
sequent uncertainty due to limits of observation and simulation accuracy, and
outcomes of close planetary passes); none of these threatens Earth8,21. The char-
acterization of these objects is less mature, and research and development for
NEO deflection has barely begun.13,22

KINETIC IMPACT DEFLECTION

Kinetic impact deflection entails one or more missions in which a conventional
spacecraft launch vehicle delivers a payload of inert mass onto a trajectory
to impact the threatening asteroid with a relative impact velocity typically
10–30 km/s. This projectile is attached to a spacecraft bus that provides final
precision guidance. The dissipation of the impactor’s kinetic energy on impact
explosively craters the surface, ejecting asteroid material into space. These
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ejecta act as propulsion for the asteroid, imparting momentum in addition to
the momentum impulse of the impactor itself.4

The impactor is guided to strike a location on the asteroid where the sur-
face is normal to the desired velocity change. This desired �V is aligned with,
or opposite to, the asteroid’s velocity, such that the entire effect goes toward
altering the semi-major axis and period of the asteroid’s orbit. With every sub-
sequent orbit of the asteroid around the Sun, its position is further diverted
from that it would have had without the impact, so the effect accumulates until
the asteroid is far enough from its original ephemeris to miss a collision with
Earth. A necessary displacement of one Earth radius (R⊕) is assumed. That is,
the asteroid must be deflected such that at the time when the collision with
Earth was predicted to occur, the asteroid is displaced by R⊕ along its orbit
from where it otherwise would have been.

In a real scenario, the required displacement distance would depend on the
particular orbit of the asteroid and associated uncertainties, relative to Earth’s
orbit. Most PHAs orbit the Sun in the same sense as Earth, such that if the path
of a PHA were to cross Earth’s path, the angle between their velocities would be
<90◦, and one would essentially catch up to the other. This geometry, combined
with the Earth’s spherical shape, cause the required displacement to be less
than R⊕ (not considering orbit uncertainties), even if the asteroid’s velocity
vector passed directly through the Earth’s center at the time of collision. If the
vector did not pass through the center, the required displacement would be
less still. However, these effects are somewhat offset by gravitational focusing,
which makes Earth’s effective radius ∼1.4 R⊕ for typical relative velocities.

POTENTIALLY HAZARDOUS ASTEROIDS

Given a 1 R⊕ displacement requirement, this simulation uses the actual or-
bital elements of 795 PHAs identified by NASA’s NEO Program to determine
the technical feasibility of actual rocket payload delivery between Earth and
PHA orbits. The NEO Program defines PHAs as those asteroids “with an Earth
Minimum Orbit Intersection Distance (MOID) of 0.05 AU or less and an abso-
lute magnitude (H) of 22.0 or less.”7 The MOID to Earth indicates the closest
possible approach to Earth of the asteroid in its current orbit. Asteroids with a
small MOID to Earth can become Earth colliders because their orbits change
with time due to long-range planetary gravitational perturbations and, particu-
larly, close planetary approaches.14 H = 22 corresponds to a diameter of ∼150 m
for an albedo of 13% (reference 7), so the majority of PHAs are >150 m in di-
ameter. As of 24 July 2005, the PHAs comprised 19% of the Near Earth Objects
(Near Earth Asteroids plus Near Earth Comets).7

Whereas the orbital elements are well determined for the PHAs, other prop-
erties are much less certain. Although there are established visual magnitudes,
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the albedo values necessary to convert to size are not well known. Even if the
size were known, the density, and therefore mass, would not be. Other gen-
erally unknown characteristics are composition, structure, size, and shape.
Due to these uncertainties, and because it is instructive to take a paramet-
ric approach in the modeling, this analysis uses the orbital elements of the
PHAs, but varies other parameters of the hypothetical asteroids together, so
that in a given simulation all 795 have the same properties apart from orbital
elements.

MODELING THE INTERCEPT TRAJECTORIES

Were a large asteroid predicted to hit Earth, and if kinetic impact were chosen as
the deflection method, substantial effort would go into determining an optimal
trajectory from the Earth to the asteroid; this would be unique to the particular
scenario, and might involve multiply staged thrusting maneuvers and/or grav-
ity assists. However, to model a large number of asteroid missions this analysis
uses simpler intercept trajectories calculated via Lambert’s method,15 requir-
ing only one thrusting maneuver (not including the staging that is required to
escape Earth’s gravity, or small trajectory adjustment maneuvers performed
by the spacecraft attached to the impactor). In addition to facilitating a gener-
alized analysis of many asteroids, this approach gives conservative results, as
most would be improved by detailed individual analysis of a scenario.

SIMULATION ARCHITECTURE

In each simulation run, 795 hypothetical asteroids are created, with the actual
PHA orbital elements and a choice of properties including size, density, and
cratering model. Also, a density is selected for the impactor; because higher im-
pactor density gives greater deflection efficiency, the authors typically assume
an impactor made of depleted uranium, with density 19 g/cm3. The authors
model the orbital elements a (semi-major axis), e (eccentricity), i (inclination),
and ω (argument of perihelion), but do not use actual values for � (right ascen-
sion of ascending node), or ν (true anomaly). These last two elements would be
relevant in describing the orientation of an asteroid’s orbit relative to Earth’s
orbit if Earth’s orbit were not considered circular, and in describing the position
of each body in its orbit at a specific time. A circular orbit is assumed for Earth,
and no a priori knowledge of the mission’s launch time.

For each hypothetical asteroid, calculate intercept trajectories from various
points in the Earth’s orbit to various points in the asteroid’s orbit, also varying
the semi-major axis of the ellipses on which the trajectories lie. Vary the trajec-
tory’s semi-major axis from the minimum possible value, am, to 2·am, in steps of
0.04·am. (Overall results improve as the upper limit is raised and as the step size
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is decreased, but these are diminishing gains that increase the computational
requirements; the upper limit and step size were selected to be a good com-
promise between maximizing gains and minimizing computation.) Simulation
results are stated in terms of a ratio, λmass, of impactor mass required for ad-
equate deflection to the maximum mass deliverable onto the chosen trajectory
by one particular launch vehicle. Rounded up to the next integer, λmass gives the
number of launches required for sufficient deflection to prevent Earth collision.

PROBABILITY OF RESULTS

The most efficient deflection theoretically possible would be found by allowing
the impactor to depart any point in Earth orbit and arrive at any point in the
asteroid orbit. However, in reality, the resulting ideal Earth-asteroid geometry
may never arise. The simulation finds the value of λmass for which there is a cer-
tain probability that this value or lower can be achieved given a certain amount
of time to wait for favorable launch geometry of the Earth and asteroid. Using
a Monte Carlo analysis, this article reports results for which the probability of
achieving those results or better is 60% for 10 years, and 80% for 20 years (Ap-
pendix I). That is, for every asteroid, the article reports a value of λmass (Table
1 and Figure 2) such that at any given point in time, there will be a 60% chance
that within the subsequent 10 years, an Earth-asteroid geometry will arise to
allow launch into a Lambert intercept trajectory resulting in the reported value
or lower. In reality, the trajectory employed may be more sophisticated than the
Lambert type used in the present models, allowing it to be more adaptable to
current or near term geometry, and thereby reducing the wait-time until launch.

MODELING THE LAUNCH VEHICLE

To assess realistically and conservatively the utility of impact deflection, this
article considers only currently available launch vehicles or their equivalent.
The two biggest U.S. vehicles are the Boeing Delta IV Heavy Lift Version
(HLV), and the Lockheed Martin Atlas V HLV, which have roughly similar
capability. The authors chose the Atlas V HLV in the single engine centaur
(SEC) upper stage configuration. It is not clear whether the Atlas V HLV will
be built, but the comparable Delta IV HLV has already undergone a test flight.
NASA is planning to build the Ares V cargo launch vehicle, which will have
much greater lift capability than either the Atlas V HLV or Delta IV HLV, but
the Ares is not invoked here.

The performance is measured in C3 versus deliverable payload mass. C3
is twice the specific kinetic energy available above Earth escape velocity, that
is, a C3 of 0 indicates that the payload can just achieve escape velocity, and a
C3 of 100 km2/s2 indicates that the payload can be put onto an interplanetary
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Figure 1: Quoted performance of the launch vehicle,16 and a 5th order polynomial fit
function of this data. The maximum mass fit function is for the launch vehicle payload only.
The Atlas V HLV SEC has an option to leave the Centaur upper stage attached to the
payload after burnout, which would add another 2,500 kilograms to the asteroid impactor.
To be conservative, this is not included in the maximum mass, but is left as a source of
margin for the results.

trajectory with a velocity relative to Earth (v∞) of 10 km/s. For each trajectory
analyzed in the simulation, a required C3 is calculated, as well as a required
impactor mass. For the required C3, a maximum deliverable mass is calculated
using a polynomial fit function of quoted launch vehicle performance values
(Figure 1). λmass is then calculated and used as the metric by which trajectories
are selected, and by which overall results are measured.

CALCULATING THE IMPACTOR MASS

To calculate the required impactor mass for a given intercept trajectory, deter-
mine the required �V to be applied to the asteroid, given by (Appendix II):

�V = 2π · δ · a · (1 − e2)0.5

3 · t · C · [e sin φ sin ν + Kφ(1 + e cos ν)]
(1)
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Figure 2: Histograms for simulation 3 (Table 1). In (A), “number of launches required” is
λmass.

where φ is the flight path angle of the asteroid (the angle between the asteroid’s
velocity vector and the line normal to the radial vector from the Sun to the
asteroid):

φ = cos−1 Kφ

φ(ν < π ) > 0
φ(ν > π ) < 0

, (2)

Kφ =
[

(1 + e cos ν)2

2(1 + e cos ν) − (1 − e2)

]0.5

, (3)

δ is the required displacement of the asteroid along its orbit at the time of
predicted collision with Earth, a is the asteroid orbit semi-major axis, e its
eccentricity, ν its true anomaly at the time of perturbation (when it is hit by the
impactor), t the time between perturbation and predicted Earth collision, and
C the asteroid orbit’s circumference (Appendix III).

To find the required impactor mass, use a momentum balance relation (Ap-
pendix IV):

�V = miVi|sin ωi|
ma

+ �Pej

ma − 1
2 mejT

, (4)

where mi is impactor mass, Vi the relative impact velocity, ωi the impact angle,
ma the asteroid mass (asteroids were assumed spherical for mass calculations),
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�Pej the total ejecta momentum, and mejT the total ejecta mass. �V is found
with Equation 1, both Vi and ωi may be found by analyzing the particular
Lambert trajectory, and ma is essentially a parameter. To solve for mi one needs
a cratering model giving ejecta mass and momentum as a function of known
quantities and mi.

An element of ejecta with mass m imparts a momentum impulse of m·Vfinal,
where Vfinal is the velocity of the ejecta relative to the asteroid after it has es-
caped the asteroid’s gravity: Vfinal = (V2

ej − V2
esc)

0.5, where Vej is the initial ejecta
velocity relative to the asteroid, and Vesc the asteroid’s escape velocity at its sur-
face: Vesc = (2G · ma · r−1

a )0.5, where G is the universal gravitational constant,
and ra the asteroid’s radius. A cratering event produces ejecta with a range of
initial velocities and therefore a range of Vfinal. �Pej is found by integrating over
initial velocities:

�Pej =
∫ ∞

Vesc

Vfinal · sin θ · dmej

dVej
· dVej (5)

where θ is the angle of ejection, taken to be 45◦ (reference 4), and dmej/dVej is
derived from an expression17 for the volume of ejecta Volej , with initial velocity
> Vej :

Volej(>Vej)R−3 = K(
√

gR/Vej)ζ , (6)

where R is the radius of the transient (initially excavated) crater, K and ζ are
target dependent constants, and g is the asteroid’s gravity at its surface. In the
cratering literature, ζ is typically denoted as ν; this study uses ζ to avoid ambi-
guity. A gravity scaling model was chosen to account for an asteroid composed of
non-coherent material, or an asteroid of initially coherent material but where
the shock of impact fragments the surrounding material—eliminating its in-
herent strength—ahead of the crater evolution, such that by the time material
is excavated, it is no longer coherent.18

R may be expressed as a function of g, Vi, mi, ρa (asteroid density), ρi (im-
pactor density), and the target dependant constants CD and β (β is determined
by ζ in gravity scaling case; see Appendix V) by combining crater relations (Ap-
pendix VI describes the derivation).19 The impactor mass required to impart a
particular �V to the asteroid is found to be:

mi = (−B −
√

B2 − 4AC)/2A (7)

where

A = k1k4 (8)

B = −�V · k3k4 − k1k3 − k2k3 (9)

C = �V · k2
3 (10)
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and

k1 = Vi|sin ωi| (11)

k2 = sin θ · ζ KC3+ζ/2
D 2

3(1+β)
β−1 Vζ

i ρ−ζ/6
a ρ

ζ/6
i ·

∫ ∞

Vesc

(
V2

ej − 2μa/ra
)0.5

V−ζ−1
ej dVej (12)

k3 = ma (13)

k4 = 1
2

KC3+ζ/2
D 2

3(1+β)
β−1 Vζ

i ρ−ζ/6
a ρ

ζ/6
i V−ζ

esc (14)

CRATERING MODELS

This study employs a set of cratering constants determined experimentally with
dry Ottawa sand as the target material:17,19 K = 0.32, ζ = 1.22, and CD = 1.68.
This is the most conservative set, in that it yields the lowest ejecta momentum
ratio the authors have found in the literature. The ejecta momentum ratio is
the ratio of the total momentum of ejecta to the momentum of the impactor,
both relative the asteroid. This is not the ratio of effective momenta as they
apply to imparting the desired �V. The effective ejecta momentum is the total
ejecta momentum multiplied by the sine of the ejection angle, taken to be 45◦

(reference 4). (By stipulating that the impactor is guided to strike the asteroid
on a surface normal to the desired �V, it is assumed that the ejecta are aimed
in the optimal direction regardless of impact velocity direction.) The effective
impactor momentum is the momentum of the impactor multiplied by the sine
of the impact angle, which ranges from 0 to 90◦, depending on the asteroid orbit
and the intercept trajectory.

In the simulations the Ottawa sand model yields an ejecta momentum ra-
tio between 5 and 17 (e.g. Figure 2D). A cratering model due to Holsapple20

suggests a momentum ratio of 38.5, and the authors have run simula-
tions with this assumption as well. In reference 20, Equation 6.6 should
be:

P =
∫ V2

V1

VdM = 1.65(0.06)
0.65

mU
((

V1

U

)−0.65

−
(

V2

U

)−0.65)
. (15)

Dr. Holsapple confirmed this correction on 24 July 2006 via personal communi-
cation. Equation 6.7 in reference 20 should then be: P = 38.5 mU, indicat-
ing an ejecta momentum ratio of 38.5, instead of 13.6. Finally, to serve as
a worst case model and to address concerns over highly porous NEOs that
may produce very little ejecta20, the authors have simulated impacts with no
ejecta.
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RESULTS

Results are summarized for selected simulations (Table 1), and shown in more
detail for a particular simulation (Figure 2).

BINARY ASTEROIDS

It is estimated that ∼15% of Near Earth Asteroids larger than 200 m in di-
ameter are binary asteroids.23 Kinetic energy impact might be somewhat more
challenging in its execution for binary asteroids, but in the vast majority of
cases would be equally as effective as for single asteroids. When impacting a
body in a binary system, there are several possible effects; Case 1: The resulting
�V to the impacted body is large enough and in the right direction to break
the binary orbit, causing divergence of the two bodies; Case 2: The �V does not
cause divergence of the two bodies, but causes their orbit to go unstable such
that the bodies collide and stick together, forming a single body; Case 3: The
two bodies remain in orbit around each other.

In Cases 2 and 3, where the two bodies remain bound together, the result of
an impact to either body in the binary system would be the same for purposes
of deflection as that of an impact to a single asteroid. Momentum is conserved,
so the impulse imparted to one of the bodies would be imparted to the entire
system, and the resulting �V to the system would be the same as for a single
asteroid of similar mass. In Case 1, both bodies after divergence may have tra-
jectories sufficiently different than that of the original binary system as to give
deflection off of Earth-collision. However, Case 1 also entails more uncertainty,
and more risk that one of the bodies would not be adequately deflected.

Case 1 would require the imparted �V to be at least as great as the dif-
ference between the bodies’ relative velocity and their mutual escape velocity.
For a binary system with two bodies of total mass mT and separation distance
d in circular orbits about their center of mass (Cm), the relative velocity is
Vrel = √

GmT/d and the mutual escape velocity is VeM = √
2 · Vrel. For given mT

and d, Case 1 is less likely to occur for systems with greater disparity between
the sizes of the two bodies, assuming an impact to the larger body. Therefore,
Case 1 is most likely for two bodies of the same size.

Consider a binary asteroid system with two 400 m bodies (roughly the same
total mass as a single 500 m asteroid) of density 3 g/cm3, as represented in
Figure 3. At 23 km separation distance, the minimum required �V applied to
either of the bodies for the system to permanently diverge is 10 mm/s with the
�V exactly parallel to the impacted body’s velocity relative to the Cm. Figure 4
shows that for a 20-year lead time, the required �V for deflection is less than
5 mm/s for the vast majority of PHAs. This threshold corresponds to 10 mm/s
applied to a body in a binary system of two equal masses. Thus, for the bi-
nary asteroid of two 400 m, 3 g/cm3 bodies separated by 23 km or less, the
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Figure 3: For a binary asteroid system with total mass equal to two 400 m bodies of density
3 g/cm3, minimum required �V applied to either body to achieve mutual escape velocity,
as a function of the bodies’ separation distance.

required �V for deflection with 20-year lead would be less than the minimum
required �V for divergence, and divergence could not occur with an appropriate
deflection impact. Even with lower divergence �V or higher deflection �V, the
impact could be timed such that the �V was not parallel to the impacted body’s
velocity relative to the Cm, the �V would not increase the velocity’s magnitude,
and divergence would not occur.

So, for binary asteroids, impact deflection in Cases 2 and 3 would give ef-
fectively the same result as for a single asteroid, while Case 1 is very unlikely
to occur. Moreover, adequate deflection may be achieved even in Case 1. Prob-
ably the biggest difference in impacting a binary system would be the added
challenges in targeting and guiding the impactor.

Figure 4: Histogram for the PHAs of required �V for a 1 R⊕ deflection with a 20-year lead
time.



D
ow

nl
oa

de
d 

B
y:

 [M
ar

ea
n,

 M
ic

he
lle

] A
t: 

13
:2

3 
31

 J
ul

y 
20

07
 Implact Deflection of Asteroids Using CLVs 69

CONCLUSIONS

Assuming lead time of two decades, simple impact is an effective deflection
method with few launches (1 to 3) for PHAs up to 500 m, either with rocklike
density (3 g/cm3) and significant cratering ejecta, or with low density (0.5 g/cm3)
and no ejecta—encompassing the majority of potential threats. It is important to
note that the authors make no assumptions of extraordinary amounts of ejecta.
In fact, their cratering model gives ejecta momentum ratios far lower than some
others found in the literature (e.g., the ratios shown in Figure 2D, typically in
the range 8 to 10, versus the ratio of 38.5 in the model due to Holsapple20).
Different asteroids have different physical properties, so will have different
cratering behavior; porous and incoherent asteroids may give very little ejecta,
and therefore the authors also simulated impacts with zero ejecta to provide a
worst case extreme in this regard.

Assuming lead time of a century and few launches, impact deflection is
effective with significant cratering for the vast majority of rocklike PHAs up
to 1 km, and without ejecta for 400 m rocklike PHAs or 750 m low-density
PHAs. Furthermore, because of its simplicity, technological readiness, and low
risk level, kinetic energy impact may still be the preferred option in the case
that more numerous launches are required, for especially large asteroids or
short warning times. With 20-year lead, five and ten intercepts will successfully
deflect 55% and 94%, respectively, of 1 km rocklike PHAs.

The greatest source of uncertainty for simulating impact deflection is the
cratering model, which dictates the momentum imparted by ejecta. Theoret-
ical and experimental cratering study is ongoing and the authors’ analysis
framework allows other crater models to be incorporated, which may give them
tangible implications regarding asteroid deflection. Particularly, scaled-down
asteroid deflection space missions (i.e., practice missions) will be very valuable
as proof-of-concept, and also in improving the ability to predict asteroids’ cra-
tering dynamics, especially as they correlate to remote sensing observations of
asteroids. Moreover, as shown by NASA’s Deep Impact mission, such investiga-
tions are simultaneously likely to yield substantial scientific results related to
small body composition and physical structure.

Besides the need for practice missions, the results suggest that an increased
investment in remote NEO sensing may greatly increase the potential utility of
impact deflection in several ways. Higher fidelity sensing of NEOs allows higher
accuracy orbit determination, which in turn gives longer lead times, increasing
the efficacy of impact deflection proportionally. Also, an important aspect of
a deflection mission—whether practice or real threat avoidance—is measuring
the effect of the impact, that is, measuring the imparted �V. This measurement
may be achieved with a second observer spacecraft, as in Deep Impact and ESA’s
planned Don Quijote mission, or it may be done with high fidelity ground-based
sensing. Especially for practice missions, �V measurement from the ground
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may eliminate the need for the observer spacecraft, drastically reducing the
mission’s cost and complexity. Finally, high fidelity ground-based sensing may
be used to characterize the target asteroid before a mission, giving insight as to
its size, shape, structure, density, spin-rate, and single versus binary nature. All
of this knowledge will be helpful in planning a more effective deflection mission,
and will also build capability to predict kinetic impact effects for a given NEO
based on prior observations of it. For all of these remote sensing applications,
interplanetary radar, such as that from the Arecibo facility in Puerto Rico, may
be the most effective technology currently available.

Impact is a relatively inexpensive and simple asteroid deflection method
that does not require nuclear weapons or exotic technology development, and
will be effective in all but the most severe threat scenarios. The method and its
advantages can be capitalized on by investing in high-fidelity remote sensing
of NEOs such as with radar, and by beginning a series of scaled-down practice
space missions.
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APPENDICES

Appendix I: Description of Trajectory Selection and Associated
Probabilities
Consider an analysis in which there is a fixed circular Earth orbit, and a

fixed asteroid orbit given by the orbital elements a, e, i, and ω. Intercept trajec-
tories will go from a test point somewhere on the Earth’s orbit to 12 fixed test
points on the asteroid’s orbit: 10 equally spaced at 36◦ apart and starting at 0◦,
and one on each of the ecliptic nodes (the points where the asteroid orbit crosses
the plane of Earth’s orbit). The nodes are included because they allow trajecto-
ries that remain in the ecliptic plane, and these are often optimal because they
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do not require energy-intensive out-of-plane thrusting. Also, included in the 10
equally spaced points is perihelion, which is generally the most efficient point
in an orbit to apply �V for the purpose of changing a. However, in any given de-
flection scenario, it may not be the optimal impact point, due to considerations
of C3 and impact velocity for each trajectory.

Now, Lambert’s method is used to calculate a number of different trajec-
tories from the Earth test point to the asteroid test point. A required C3 is
calculated for each trajectory. The trajectories with C3 values <140 km2/s2

(highest value for which Atlas V HLV SEC performance is quoted) are ana-
lyzed further.

For a given point in a particular asteroid orbit, a given lead time before
the hypothetical predicted Earth collision, and a given required asteroid dis-
placement at the time of predicted Earth collision, a required asteroid �V to
be applied to the asteroid is calculated. Knowing the required �V, the aster-
oid’s orbit, the intercept trajectory, the asteroid’s properties, and the crater-
ing dynamics, calculate the required impactor mass to effect the required �V.
Also, using the polynomial fit function for launch vehicle performance, calcu-
late the maximum mass that can be launched with the specified C3. Then cal-
culate λmass, and select the trajectory with the lowest (best) value, to be called
λmassMin.

Figure A1: The Minimum Mass Ratio (λmassMin) function for one of the hypothetical
asteroids, and the associated asteroid test point (ast pointmin) numbers. Each interval over
which ast pointmin is constant is called a region.
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Imagine that this is done with the Earth test point at all different positions
in the Earth orbit, and always with the same 12 asteroid test points. Then get
a function of λmassMin versus Earth orbit position. Now, define “regions” of the
λmassMin function to be the angular intervals in the Earth orbit over which the
associated asteroid test point (call this ast pointmin) is constant. For the case
shown in Figure A1, there are six regions.

In the simulation, do the analysis as described so far, except have four Earth
test points, equally spaced at 90◦ apart. When calculating trajectories and λmass

values, go from each of the four Earth test points to each of the 12 asteroid
test points and pick the one trajectory with λmassMin from all of these. Then,
incrementally step all four Earth orbit test points (by 1◦) together around the
Earth orbit relative to the asteroid orbit, leaving the asteroid orbit test points
fixed. At each incremental step, find the trajectory with λmassMin. Increment the
Earth test points through a shift range (90◦) equal to the spacing between the
Earth test points. This way, all locations (at 1◦ steps) on the Earth orbit are
tested by one of the Earth orbit test points.

As the Earth test points are incremented through the shift range, the one
associated with the λmassMin trajectory (call this Earth pointmin) will be in one
region of the λmassMin function (Figure A1) for some number of increments, and
then will be in another region, that is, ast pointmin will change. This transition
could coincide with Earth pointmin switching to a different one of the four Earth
test points, or remaining on the same Earth test point. The range of increments
over which Earth pointmin is in one region (i.e., has a constant ast pointmin) is
called a “zone.” The lengths of all the zones add up to the length of the shift
range, which is the same as the Earth point spacing, 90◦ (Figure A2).

From all the λmassMin values obtained throughout the shift range, the worst
(highest) one—call this λmassMinW—is recorded, representing the worst case that
can be expected as long as the Earth is ever in one of the zones while the asteroid
is located such that it will be at the test point corresponding to that zone, in

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure A2: Regions and zones illustrated with six steps in the process of incrementing the
Earth test points. (For simplicity of the diagram, the regions are shown here as bounded by
local maxima in the λmassMin function, but this is not always the case, as shown in Figure
A1.) In the present simulations, the Earth test points are stepped in 1◦ increments through
the 90◦ shift range. Here are 6 of those 90 steps: (A) The Earth test points are at 0◦, 90◦, 180◦,
and 270◦. Earth test point 1 has the lowest value of λmassMin, and so the overall λmassMin for
this first step, λmassMin(1), is there, in Region 5. Also, it is in the first zone of the incrementing
process, which is called Zone 1. (B) The Earth test points have been shifted forward. Now
Earth test point 4 has the lowest value of λmassMin, and so for this second illustrated
step,λmassMin(2) is there, in Region 4. Because the region associated with the overall
λmassMin has changed, the zone has also changed, from Zone 1 to Zone 2. (C) The Earth
test points have been shifted further forward, and λmassMin(3) is associated with Earth test
point 1, Region 1, and Zone 3. (D) λmassMin(4) is associated with Earth test point 3, Region 3,
and Zone 4. (E) λmassMin(5) is associated with Earth test point 1, Region 1, and Zone 5. (F)
λmassMin(6) is associated with Earth test point 4, Region 5, and Zone 6.
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Figure A3: Probabilities of achieving an Earth-asteroid geometry that gives λmassMinW or
better, over (A) a 10-year period, and (B) a 20-year period. It is unknown how many zones
will exist for a particular asteroid, but one needs to input a number of zones to the
Monte-Carlo analysis. Here calculate the probabilities for different numbers of zones from 1
to 99, with 4 Earth test points, 12 asteroid test points, and 10,000 Monte-Carlo runs for each
probability calculation. In both (A) and (B), as the number of zones increases, the
probability initially decreases significantly, but then levels off and fluctuates due to its
random components. It settles around 81% for the 20-year case, and 61% for the 10-year
case.
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the amount of time required to traverse the corresponding intercept trajectory.
(In Figure A2, λmassMinW = λmassMin(2).)

A separate Monte-Carlo simulation calculates the probability that this sit-
uation will arise in some given amount of time. Each run of this simulation
includes Earth in its orbit, and a hypothetical asteroid with an orbit selected
randomly from among the limits of real PHA orbital elements. A certain number
of zones are defined, with random locations, angular widths randomly appor-
tioned from a total equal to the shift range—in this case, 90◦, and one of the
fixed asteroid test points randomly assigned to each. Both Earth and the as-
teroid are initialized to random locations in their respective orbits. Then the
simulation examines every moment in time when the asteroid is at one of its
test points, and calculates whether the Earth was in the corresponding zone
at the corresponding time. If the answer is “yes” at least once in the allowed
time period, the condition has been satisfied. The percentage resulting from the
Monte-Carlo analysis is the number of runs where the condition was satisfied
divided by the total number of runs.

A longer allowed time period increases the probability that the condition can
be met, although not proportionally. Also, the probability increases as the sum of
the angular lengths of the zones increases. This corresponds to a lower number
of Earth test points and an inversely greater Earth test point spacing and shift
range. However, this would also result in a worse (higher) value of λmassMinW.
The Monte-Carlo analysis gives the probability that the lowest achievable value
of λmass for a particular asteroid over an allowed time range will equal λmassMinW

or better (lower).
To be conservative, round down slightly from the results shown in Figure

A3, and say that the probability of achieving the stated results is 60% if there are
10 years to achieve favorable launch geometry among the Earth and asteroid,
and 80% if there are 20 years. Again, in reality, the trajectory employed may be
more sophisticated than the Lambert type used in the present models, allowing
it to be more adaptable to any current or near term geometry, such that the wait
time until launch would likely be less than 10 years.

Appendix II: Derivation of Required ΔV

Assuming a change in velocity, �V, applied in the direction of, or opposite
to the asteroid’s velocity, find the �V necessary to deflect along its orbit by some
distance, δ in some time, t.

Start with the perturbation equation for the semi-major axis in a Keplerian
orbit due to a perturbing force:1,2

da
dt

= 2a1.5[μ(1 − e2)]−0.5[R · e sin ν + T(1 + e cos ν)] (A2.1)

where a is the asteroid orbit semi-major axis, μ is the Sun’s gravitational con-
stant, e is the asteroid orbit eccentricity, ν is the asteroid’s true anomaly when
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the perturbation is applied, R is acceleration (force per unit mass) applied along
the radial direction (from the Sun to the asteroid), and T is the transverse ac-
celeration applied normal to the radial direction, positive in the direction of the
asteroid’s velocity.

Define F to be the total acceleration applied, then:

R = F sin φ and T = F cos φ (A2.2)

where φ is the flight path angle of the asteroid:

φ = cos−1 Kφ

φ(ν < π ) > 0
φ(ν > π ) < 0

(A2.3)

and

Kφ =
[

(1 + e cos ν)2

2(1 + e cos ν) − (1 − e2)

]0.5

. (A2.4)

Now: da = 2a1.5[μ(1 − e2)]−0.5[sin φ · e sin ν + Kφ(1 + e cos ν)] · F · dt (A2.5)

and the asteroid orbit period is P = 2π · a1.5μ−0.5. (A2.6)

So: �a = P
π

(1 − e2)−0.5[e sin φ sin ν + Kφ(1 + e cos ν)] · �V, (A2.7)

where F·dt integrated over the time of impact is just the momentum impulse
per unit mass, or �V. One orbit after the perturbation, the deflection is:

δ1 = �P
P

C (A2.8)

where C is the circumference of the asteroid orbit and is approximated by a
formula due to Ramanujan:3

C ≈ π (a + b)
[
1 + 3x2

10 + √
4 − 3x2

]

x = a − b
a + b

(A2.9)

where b is the asteroid orbit semi-minor axis. Since

dP
da

= 3π

(
a
μ

)0.5

, one can write (A2.10)

�P
P

= 1.5
�a
a

. (A2.11)

Over multiple orbits (of number N), the total deflection, δ, will be:

δ = δ1N with N = t
P

(A2.12)
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So:

δ = 1.5P
π · a

(1 − e2)−0.5[e sin φ sin +Kφ(1 + e cos v)] · C · N · �V (A2.13)

Finally:

�V = 2π · δ · a · (1 − e2)0.5

3 · t · C[e sin φ sin v + Kφ(1 + e cos v)]
(A2.14)

APPENDIX III: DERIVATION OF FLIGHT PATH ANGLE, φ

The flight path angle, φ, of an object in orbit about a central body (e.g., an
asteroid about the Sun) is the angle between the object’s velocity vector, , and
the line normal to the radial vector, r, from the central body to the object, as
illustrated in Figure A4. φ is defined to be positive in the first half of the orbit
(true anomaly between 0 and π ), and negative in the second half of the orbit.
Here derive an expression for φ as a function of the object’s position in orbit
(given by the true anomaly, ν), and the orbit’s eccentricity, e.

Equations A3.1–A3.3, A3.5, and A3.6 can be found in reference 4.
The radial distance, r, is given by:

r = p
1 + e cos ν

(A3.1)

where the parameter, p, is defined by:

p = h2

μ
(A3.2)

where μ is the central body’s gravitational constant, and h is the object’s specific
angular momentum, given by:

h = rV cos φ (A3.3)

where V is the object’s velocity.

Figure A4
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Combining Equations A3.1–A3.3 gives Equation A3.4:

φ = cos−1
[

1
V

(
μ(1 + e cos v)

r

)0.5]
(A3.4)

The specific orbital energy, ε, is given by:

ε = V2

2
− μ

r
or V =

(
2ε + 2μ

r

)0.5

(A3.5)

Another expression for the parameter, p, using the semi-major axis, a, is given
by:

p = a(1 − e2) (A3.6)

Substituting Equations A3.1, A3.5, and A3.6 into Equation A3.4, and simplify-
ing gives the final expression for φ:

φ = cos−1
[

(1 + e cos ν)2

2(1 + e cos ν) − (1 − e2)

]0.5

(A3.7)

Appendix IV: Momentum Balance Relation
The following explains the momentum balance relation:

�V = miVi|sin ωi|
ma

+ �Pej

ma − 1
2 mejT

(A4.1)

where ωi is the angle of impact relative to the asteroid’s surface and mejT is the
total mass of all ejecta with initial velocity greater than the asteroid’s escape
velocity.

Consider a time point right before the impactor hits the asteroid, and a time
point after the cratering event. In the reference frame moving at the asteroid’s
velocity before impact, the momentum balance equation (in the direction tan-
gential to the asteroid’s original velocity) is:

miVi|sin ωi| = −Pej + �V
(
ma − mejT

)
(A4.2)

where Pej is the total momentum of the ejecta relative to the reference frame
moving at the asteroid’s original velocity; however, do not actually calculate
that quantity. Instead, integrate the ejecta momentum always relative to the
asteroid’s instantaneous velocity, to come up with the term �Pej . Thus, it is
more accurate to derive the momentum balance equation as follows. Consider
two changes in velocity, �V1 and �V2. �V1 is caused by the momentum impulse
of the impactor itself. Its momentum balance equation in the reference frame
of the asteroid before impact is:

miVi|sin ωi| = �V1 · ma or �V1 = miVi|sin ωi|
ma

(A4.3)



D
ow

nl
oa

de
d 

B
y:

 [M
ar

ea
n,

 M
ic

he
lle

] A
t: 

13
:2

3 
31

 J
ul

y 
20

07
 80 Koenig and Chyba

�V2 comes from the momentum imparted by the ejecta. Its momentum balance
equation in the reference frame of the asteroid after �V1 may be approximated
by:

�V2 = �Pej

ma − 1
2 mejT

(A4.4)

Finally:

�V = �V1 + �V2 = miVi|sin ωi|
ma

+ �Pej

ma − 1
2 mejT

, (A4.5)

which is the equation used in the present simulations. Results from this equa-
tion and one in which the 1/2 mejT term is not included differ by only about 1
part in 104.

Appendix V: Relationship of Cratering Constants β and ζ
In cratering equations described in the literature5,6,7,8,9,10 there are two

constants that are commonly presented separately and independently, but for
which the present authors have found a simple relationship that holds in the
gravity scaling regime.

The constants are most commonly denoted as β and ν. However, denote ν

as ζ . The relationship is: ζ = 6β

1−β
, or β = ζ

ζ+6 , and a derivation of this follows.
The first indication of the relationship came when the following exponent

appeared in a derived equation to calculate the required impactor mass to im-
part a certain momentum impulse via ejecta from a cratering event:

6
6 − 6β + ζ − ζβ

This exponent would equal 1 if β = ζ / (ζ + 6), which seemed more sensible
in context than allowing β and ζ to be independent and using various values
from the literature, which would cause the exponent to vary slightly around 1
in both directions.

From reference 5:

π1 = Vol · ρa

mi
, π2 = g

V2
i

(
mi

ρi

)1/3

, π3 = Y
ρiV2

i

, π4 = ρa

ρi
(A5.1)

In reference 5, ρa is denoted as ρ, ρi as δ, Vi as U, Vol as V, and mi as m.

π1 = Cπ−α
2 π

−β

3 π
−γ

4 (A5.2)

C and all Ci (see later) are constants.
As noted in reference 5, p. 1852, “It will be assumed that each of ρ and δ

are fixed, and any dependence on these variables will not be addressed.”
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Thus, π4 is fixed, so one can set π
−γ

4 = C2, since γ is a constant. Also, in the
gravity regime, π1 is independent of strength, Y, so we may remove π3 from
Equation A5.2. Now, π1 = C2π

−α
2 .

From reference 6:

πD = D
(

ρa

mi

)1/3

(A5.3)

Also, because volume, Vol is related to diameter, D, by Vol ∝ D3,

then: π
1/3
1 = C3 D

(
ρa

mi

)1/3

, and πD = C4π
1/3
1 = C4

(
C2π

−α
2

)1/3
, (A5.4)

and : πD = C5π
−α/3
2 . (A5.5)

(In the derivation of the π groups, described in Part 6, the authors find π1 =
Vol·ρi

m . Because ρa/ρi is taken here to be constant, this alternate formulation of
π1 can be used in the derivation above of Equation A5.6, with no difference in
the results except for the value of C5.)

From reference 6:

πD = CDπ
−β

2 (A5.6)

Combining Equations A5.6 and A5.7:

β = α

3
(A5.7)

From Table 1 in reference 7:

Volej(> V)
R3

∝
(

V√
gR

)6α/(α−3)

(A5.8)

From reference 6:

Volej(> V)
R3

= K
(

V√
gR

)ζ

(A5.9)

Combining Equations A5.9 and A5.10:

ζ = 6α

3 − α
(A5.10)

Combining Equations A5.8 and A5.11:

ζ = 6β

1 − β
, or β = ζ

ζ + 6
(A5.11)
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Appendix VI: Derivation of π Groups
The crater relations are given by reference 6 as follows:

πD = CDπ
−β

2 , where πD = Dρ1/3
a m−1/3

i , and π2 = 3.22gr/V2
i (A5.12)

This expression for π2 is consistent with that given in reference 8: π2 =
1.61gL/V2

i , where L is the diameter of the impactor, L = 2r. It is also equivalent
to the following formulation:

π2 = g
Q

m1/3
i ρ

1/3
i , (A6.1)

where Q is the specific kinetic energy (kinetic energy per mass) of the impactor,
Q = 1/2V2

i . This assumes a spherical impactor, so that 3.22r = 2m1/3
i ρ

1/3
i . The

“mass set” π group is discussed in reference 5, which uses the mass, mi, the
velocity, Vi, and the mass density, ρi, to characterize the impactor. The dimen-
sionless quantities are listed as follows:

π1 = Vol · ρa

mi
, (A6.2)

π2 = g
V2

i

m1/3
i ρ

1/3
i , (A6.3)

π3 = Y
ρiV2

i

, and (A6.4)

π4 = ρa

ρi
, (A6.5)

where Vol is the volume of the excavated crater, and Y is the strength (units
of N/m2) of the asteroid (or other material being impacted). There is a factor of
2 difference between the formulation for π2 given by Equation A5.1, and that
given by Equation A5.3. The authors use Equation A5.1 in the derivation of the
impactor mass vs. �V relation, because that is the version used to derive the
cratering constants K, CD, β, and ζ in experiments such as those described in
reference 9.

In the present authors’ derivation of the “mass set” π group, they get the
same quantities as those given in reference 5, with the exception of π1, which
is found to be

π1 = Vol · ρi

mi
. (A6.6)

Besides being a direct result of the mathematics, this formulation is found
to be most consistent with the Buckingham Pi Theorem11 on which the π groups
are based, because it allows each π quantity to be independent of the others,
that is, any one could be changed without affecting any other. This is not the case
for Equations A5.2–A5.4 as written. However, in the discussion of dimensional
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analysis using the π groups, reference 5 also says that “It will be assumed that
each of ρa and ρi are fixed, and any dependence on these variables will not be
addressed” (p. 1852). Thus π4 is just a constant, and Equations A5.6 and A5.2
differ only by a constant.
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