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A seismometer placed on Jupiter’s moon Europa can use pas-
sive monitoring to determine the presence or absence of a possible
liquid water ocean beneath Europa’s surface ice and estimates of
the thickness of the ice shell itself. Using probable seismic velocities
for Europa’s ice it is demonstrated that surface waves propagating
in the frequency band of 0.1 to 0.5 Hz (wave periods of 2 to 10 s)
can discriminate ice shells varying from 5 to 20 km in thickness.
Miniature, light-weight seismometers with appropriate sensitivities
are available. c© 2001 Academic Press
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The existence of a subsurface “ocean” of liquid water on E
ropa was suggested shortly after the flyby of theVoyager Ispace-
craft (Cassenet al. 1979). The groundbased spectroscopic s
nature of Europa is dominated by water ice (Clarket al.1986),
and interior models based on bulk density suggested there c
be an outer layer of ice∼100 km thick overlying a rock/mantle
interior, provided that Europa was a differentiated body (Cas
et al. 1979). Theoretical models indicated sufficient geoth
mal and tidal heating in Europa’s subsurface to maintain m
of this ice layer as liquid water beneath an outer layer of
∼10 km thick (Cassenet al. 1979, 1980; Ross and Schube
1987; Squyreset al.1983; Ojakangas and Stevenson 1989). T
paucity of craters on Europa’s surface, combined with estima
of the comet impact rate in the jovian system, suggest that
ropa’s average surface age is∼10 Myr (Zahnleet al.1998, 1999),
indicating that Europa must be a geologically active world th
resurfaces itself on this timescale.

Gravity measurements with theGalileo spacecraft indicate
that Europa is in fact a differentiated body. Permissible fir
order radial density models that do not violate mass and mom
of inertia constraints indicate that Europa can have a combi
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tle mixture of silicates and metals (Andersonet al.1997, 1998).
Perhaps the most compelling evidence for a subsurface li

water layer on Europa comes from recent magnetic field res
(Khuranaet al.1998, Kivelsonet al.2000) that show the signa
of an induced field at Europa. This signal requires the existe
of a near-surface, global conducting layer, for which the m
probable explanation is a global, salty ocean.

Consistent with this result, high-resolution images of E
ropa’s surface show a variety of features that are interpretab
indicative of an ice shell overlying a subsurface liquid lay
including linear features, chaotic terrain, and small “pon
(for summaries, see Greeleyet al. (1998) and Pappalardoet al.
(1999)). The orientation and relative age relationships of
ropan lineaments is consistent with nonsynchronous rota
of an ice shell decoupled from a synchronously rotating in
rior by liquid water or ductile ice (Geissleret al. 1998). Other
images show regions of chaotic terrain, where broken pie
of the surface seems to have “rafted” into new positions (C
et al.1998, Williams and Greeley 1998, Greenberget al.1999),
cracks and extensional bands that likely were filled in with n
fluid material (Greenberget al.1998, Tuftset al.2000), and cy-
cloidal cracking explicable in terms of changing diurnal str
(Hoppaet al. 1999). Such geological features could have b
formed in a thin (only a few kilometers thick) frozen crus
layer overlying liquid water (Greenberget al.2000), but solid-
state explanations for many of them have also been sugge
The solid-state explanations typically involve diapirism with
a thick (tens of kilometers thick) ice crust, possibly includi
bodies of melt or partial melt within the ice shell, overlying
liquid water ocean (Pappalardoet al. 1998, 1999; McKinnon
1998, 1999; Headet al.1999; Collinset al.2000).

All of this evidence, however, including the magnetic field
sults, is indirect in nature. The direct detection of a liquid wa
layer could be made by an orbiting altimeter or ice-penetra
radar. A laser altimeter could measure the tidal deformatio
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FIG. 1. Raypath diagram for vertically polarized

Europa’s surface; the amplitude of the time-varying tidal bu
will be more than an order of magnitude greater if Europa
an ice layer over liquid water (vertical deflection∼30 m) than
it will be for solid ice (vertical deflection∼1 m). Since the tida
response depends on the product of the thickness and rigid
the decoupled ice shell, Moore and Schubert (2000) argue
is will prove difficult to determine the thickness of the ice in th
way. It is possible that a radar sounder could detect an ice/w
interface on Europa directly, but this instrument could fail
penetrate an ice layer with sufficient conductivity or volume
scattering. A radar instrument may well provide important
formation about subsurface structure, but cannot be counte
as an “ocean-detection” instrument (Chybaet al. 1998, Moore
2000).

Yet knowledge of the thickness of Europa’s ice shell and
depth of its putative subsurface ocean has important imp
tions for exobiology (Chyba 2000a, b; Greenberget al. 2000;
Gaidos and Nimmo 2000; Chyba and Phillips 2001). Here
demonstrate that one or more seismic sensors, emplaced o
Europan surface, could use passive monitoring not only to
e presence or absence of a liquid water ocean, but
e the thickness of the ice shell.
(SV) waves critically reflected in an ice sheet on water.
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Both diurnal variation and nonsynchronous rotation can c
ate significant stress fields in Europa’s ice (Greenberget al.
1998). Convection, density differences, and topographic dif
ences may also contribute to the background stored stre
Any of these may trigger or help trigger localized stress rele
on fractures (e.g., Hoppaet al. (1999)). This fracturing may be
accompanied by detectable natural seismic signals. The na
quakes on Earth’s Moon demonstrated a strong reproducib
and correlation with the tidal cycle (Toks¨ozet al.1977). We an-
ticipate that the alternating stress regimes caused by tidal fle
over each 3.55-day Europan tidal cycle will also trigger seism
activity.

Europa’s surface is subject to comet and asteroid imp
(Zahnleet al. 1998, 1999), which would also result in seism
signals. However, the small-mass spectrum (and therefore
quency) of comet and asteroid impacts in the jovian system
mains poorly known (see Pappalardoet al.(1999) for a review).

In this paper we demonstrate that simple passive seismic m
itoring with a single 3-axis instrument placed on Europa’s s
face can yield information regarding the presence or absence

alsoliquid ocean beneath the surface ice layer, and provide estimates
of the thickness of the ice layer itself.
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FIG. 2. Nondimensional group velocity as a function of nondimension
wave velocity in the ice. Observe the inverse dispersion in that higher freq

GENERAL COMMENTS ON SEISMIC WAVES

A few general comments are in order. Seismology makes
of the travel times of seismic body pulses and the dispersio
seismic surface waves to infer the internal velocity structure
planetary body. Seismic body waves are of two types: comp
sional or longitudinal waves and shear or transverse wave
a compressional wave the propagating displacement field va
in the direction of propagation. In contrast, a shear wave
its propagating displacement field varying at right angles to
direction of propagation. We further categorize shear waves
SV waves and SH waves. By defining thez axis as downward
and placing thex–z plane along a great circle path between

source and receiver, shear wave polarizations can be defined
waves will have transverse displacements in thex–z plane and
l frequency for SH waves (Love waves) trapped in a floating ice sheet.Vs is the shear
encies arrive first (see text).
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are called vertically polarized shear waves. SH waves, hori
tally polarized shear waves, will have their displacements in
y direction and thus be parallel to a planetary surface.

Surface waves offer the most promising tool for exploring E
ropa’s outer layers. These waves propagate as Love or Ray
waves in a waveguide formed by velocity variations with dep
Since the wave propagation is dispersive the phase velocity,c, of
propagation is dependent on frequency through a characte
equation involving the velocity depth function. In other word
different wavelengths “see” different depths. The observed
face wave dispersion can be inverted to infer the variation
seismic wave velocity with depth. Love wave propagation
also be envisaged as SH waves trapped in a surface waveg

. SVRayleigh wave propagation is more complicated involving P and
SV waves trapped near the surface.
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SEISMIC VELOCITIES IN ICE

Some terrestrial observations for the velocities of compr
sional (Vp) and shear waves (Vs) in glacier ice and on floating
ice sheets are summarized in Table I. The data indicate ave
values ofVp ∼ 3.58 km/s andVs ∼ 1.66 km/s. The temperatur
range of the reported observations is limited but the observat
indicate that seismic velocities in ice increase as the temp
ture decreases. We are interested in values appropriate fo
temperature conditions on Europa.

Proctor (1966) and Hobbs (1974) presented values for
dynamic compliance and stiffness constants of ice in the t
perature range from 60 to 110 K. From these values the sei
velocities in ice can be determined. For hexagonal crystals,
ice, there are five independent stiffness or compliance cons
that vary nonlinearly with respect to temperature. Hobbs (19
calculated that the spatially averaged velocities of longitud
and transverse waves in ice at 0 K are 4.2 and 2.1 km/s
spectively. For ice at 110 K, the average surface temperatu
Europa, the average values, using the technique describe
Anderson (1963), with an ice density of 0.93 g cm−3 are 4.0 and
2.0 km/s. These values for the seismic velocities are abou
10% greater than the velocities measured on terrestrial gla
at temperatures of 256–273 K. All of the data for ice, ove
wide temperature range, indicate thatVp varies in tandem with
Vs asVp ∼ 2Vs. The calculated value of Poisson’s ratio for i
is 0.35, higher than the value of 0.25 typically measured
terrestrial rocks. For Europa modeling purposes we shall a
values ofVp = 4.0 km/s andVs = 2.0 km/s. Contaminates, suc
as salts (McCordet al.1999), are believed to be present in E
ropa’s ice. The results of Khuranaet al. (1998) and Kivelson
et al. (2000) suggest that the salinity of Europa’s ocean may
roughly comparable to that of Earth. Values of seismic veloci
for terrestrial sea ice fall within the range of values observed
glaciers (Table I) and also indicate thatVp ∼ 2Vs. Sea ice, with
a salinity of 1%, at subfreezing temperatures has a density

0.7% greater than that of pure ice (Anderson 1960). It is believed
that at Europa’s temperature any change in the assumed veloci-

Its frequency content is almost constant, being governed by
constructive interference and as a result its characteristic
TABLE I
Longitudinal and Shear Velocities in Terrestrial Ice Sheets

Location Vp (km/sec) Vs (km/sec) Temperature,◦K Reference

Austrian Alps 3.60 1.69 273 Mothes (1927, 1929)
3.20 1.70 273 K¨ohler (1929)

Austrian Alps 3.58 1.67 273 Brockamp and Mothes (1930, 1931)
Grand Glacier d’Aletsch 3.57 1.67 273 Mothes (1929)
Ross Shelf Ice, Antarctica 3.36–3.90 0.9–1.58 ? Poulter (1947a, b)
Dronning Maud Land, Antarctica 3.80 ? ? Robin (1953)
West Greenland Icecap 3.80 1.91 268 Joset and Holtzscherer (1953)
West Greenland Icecap 3.82 1.92 256 Joset and Holtzscherer (1953)
Central Greenland Icecap 4.00 1.94 245 Joset and Holtzscherer (1953)
Fletcher’s Ice Island, Arctic Ocean 3.35–3.78 1.71–1.84 ? Crary (1954)

Arctic Pack Ice 2.93–3.49 1.49–1.56
D CHYBA

es-

rage

ions
era-
r the

the
m-
mic
like
ants
74)
nal
re-

e of
d by

t 5–
iers
a

e
for
opt

h
u-

be
ies
on

nly

ties, which are a function of the elastic moduli and the densi
produced by salty contaminates can be taken to be minimal.

CRARY WAVES

A distinctive seismic wave may be observed on a floating i
sheet on Europa. This is the Crary wave, an unusual type of v
tically polarized shear wave (Crary 1954), produced by critic
angle multiple reflections at the upper and lower ice boundari
Assume a SV wave traveling from left to right critically reflecte
at the upper space-ice and lower ice-water interface (Fig. 1). T
critical angle of incidenceθcr is equal to sin−1(Vs/Vp). At this
angle the incident SV wave is totally reflected back into the ic
with a reversal of phase at both interfaces in its original form
an SV wave. At this angle of incidence on the boundaries t
vertical displacement becomes zero.

We are interested in finding the SV wave frequency,f , which
gives constructive interference between multiply reflecte
waves. Constructive interference will take place when the t
tal wavelength path of a rayABCD, corrected for phase shifts at
the interfaces, is a multiple of a wavelength,λ, or

2H cosθcr− λ = nλ, n = 1, 2, . . . . (1)

The second term allows for the phase reversals on reflection
the space-ice and water-ice interfaces.λ = V/ f where f is the
frequency so that forn = 1 we have

H = V/ f cosθcr. (2)

The Crary wave is most easily seen on a radial component (lo
gitudinal horizontal) seismic sensor, i.e., a sensor oriented w
its axis along the path from the source to the receiver. Its h
izontal phase velocity isVs/ sinθcr so that the wave will arrive
shortly after the first arrival compressional wave and before th
of the horizontally polarized shear waves (SH).
? Oliveret al. (1934), Ewing and Crary (1934)
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SEISMIC DETECTION

frequency isimmediately diagnostic of the ice thickness. The
ice thickness is equal toVs/ f cosθcr. For example, adopting
values for Europa ofVp = 4.0 km/s andVs = 2.0 km/s gives
θcr = sin−1 (Vs/Vp) of 30◦. An ice thickness of 5 km would
yield a characteristic frequency of 0.48 Hz, an ice thicknes
10 km 0.24 Hz. The seismic velocities in a Europan ice she
unknown thickness will vary with depth controlled by the nonl
ear temperature gradient within the ice. The resultant “ringi
frequency of the surface waveguide will still be proportional t
weighted average shear velocity as a function of depth and
lie within the bounds of 1.7 to 2.0 km/s.

SH WAVES OR LOVE WAVES

A special case of Love wave propagation will also take pl
in a floating ice sheet. In this case horizontally polarized sh
waves are trapped and multiply reflected within the ice la
because of complete reflection at all angles of incidence a
upper and lower boundaries of the ice sheet. This condition a
because of the forced upper and lower boundary condition
the vanishing of the tangential stresses and the absence o
rigidity modulus above and below the ice layer. Press and Ew
(1951) have shown that Love waves will propagate provided
following condition is met:

tan
[
kx H

(
c2

x

/
V2

s − 1
)1/2] = 0. (3)

H is the ice thickness,kx is the horizontal wave number,cx is
the horizontal phase velocity, andVs is the shear wave velocit
in the ice. It can be seen that this expression will be satisfie
kx H (c2

x/V2
s − 1)1/2 = nπ , wheren = 0, 1, . . . .

Making the substitutionVs/cx = sinθ andkx = 2π sinθ/λ,
whereλ is the wavelength in the direction of propagation, we o
tain the expression for constructive interference between m
ple-reflected SH waves with an incident angleθ from (3) as

2H cosθ = nλ. (4)

Sincecx = 2π f/kx the Love wave is dispersed in that differe
frequencies have different apparent velocities. For a dispe
wave train it is the group velocityU = d(cxkx)/dkx that controls
the sequence of arrivals on a seismogram. From (3) we
show thatU = Vs sinθ = V2

s /cx. Using the above relations w
can compute a nondimensional group velocity dispersion c
given in Fig. 2. Because of the periodicity of the tangent funct
there are an infinite number of modes. Only the fundame
mode is shown in the figure.

The following features can be noted for Love wave pro
gation in a floating ice sheet. As 2π/λ→∞ (i.e., very short
wavelengths),U → Vs the velocity of shear waves in the ic
layer. In other words the first arrivals are high-frequency wa
that travel with the velocityVs. With advancing time the wav

frequency decreases until it reaches a cutoff frequency given
Vs/2H . This result is distinctly different to wave propagatio
OF EUROPA’S OCEAN 283
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in an ice layer overlying a rocky substrate. In this case the
nite, faster shear wave velocity in the substrate would prod
normal dispersion with lower frequencies arriving first (Job
1953). Hence, we have our first simple diagnostic tool.If Eu-
ropa’s outer shell is ice overlying liquid we would observe i
verse dispersion with higher frequencies arriving first. If a fluid
substrate were absent the observed sequence of arrivals w
exhibit normal dispersion. The nondimensional group veloc
relation as a function of frequency can now be scaled using
thickness of the ice as a variable (Fig. 3). It can be seen
the steep portion of the dispersion curve will govern a port
of the arriving wave train. In other words, a large change
group velocity will occur for a very small change of frequen
or wave period. Since group velocity is distance divided by
travel time of a wave of a given frequency the observational
sult is that a long, nearly sinusoidal wave train will be genera
whosepredominant frequency is indicative of the ice thickne.
On Europa measuring the nearly constant frequency of this
seismic wave will be a direct determination of theaverageice
thickness between a source and receiver.

One final aspect of the Love wave (surface wave) dispers
on Europa needs to be mentioned. For the floating ice s
we have assumed for computational simplicity a plane la
approximation rather than a spherical shell. Europa’s radiu
comparable to that of the Earth’s Moon so a plane layer appr
imation is adequate as long as the seismic wave periods do
exceed 25–30 s (Kovach and Press 1962). For ice shells ran
from 5 to 20 km in thickness the diagnostic wave periods ran
from 3 to 10 s and satisfy this requirement. In any case the ef
of Europa’s curvature would be to raise the values of the ph
and group velocities at these longer periods by about 5%.

COUPLED P AND SV WAVES, RAYLEIGH WAVES

The complete wave propagation solution for coupled P a
SV waves in a floating ice sheet is more complicated. Look
at short and long seismic wavelengths compared to the th
ness of the floating ice sheet we can draw some conclusion
these limiting cases. For wavelengths that are intermediate in
mension to the ice thickness, the wave propagation velocity
become a complex number because attenuation is taking p
as a result of wave radiation from the ice sheet into the wa
This means that waves will be dispersive but selectively att
uated. For short wavelengths the seismic waves will propag
with the Rayleigh velocity, 0.9Vs, at the top of the ice layer and
the Stoneley wave velocity, 0.87α2, at the ice–fluid interface (α2

is the compressional wave velocity in the fluid substrate).
long wavelengths the waves will propagate as flexural wave

The important conclusion is thatsimple seismic wave moni
toring in the frequency band from 0.08 to 10 Hz (wave perio
of 0.1 to 12.5 s) will be useful for discriminating thickness o
Europan ice shell ranging from kilometers to tens of kilomete.

by

n
In addition, straightforward measurements of S minus P-wave
arrival times, which are directly proportional to the distance
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FIG. 3. Group velocity versus frequency for Love waves in a

from any natural tectonic event, should allow a first-order ra
velocity mode for Europa to be determined.

Terrestrial ice tremors, which resemble miniature ea
quakes, are produced by the fracturing of ice under var
stresses (Crary 1954, 1955). Usually P and SH waves are
defined. The SH wave, as described earlier, shows a disp
wave train with the initial impulse arriving at the velocity
the transverse waves. The main causes of internal fracturing
cracking on terrestrial lake ice sheets are thermal effects
often produce an audible signal similar to a rifle shot or
Doppler effect of a moving sound source.

SEISMIC INSTRUMENTATION

Any seismic detector to be used on Europa should be a 3
instrument. A 3-axis seismometer has the following advanta

(1) The polarization of the seismic signal can be determin

is allows compressional, shear, and surface waves to be
biguously identified.
floating ice sheet of various thicknesses.H is the thickness of the ice.
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(2) The angle of emergence of the seismic wave can be d
mined. This is relevant to determining the location of any qu
and unraveling the structure of the interior.

(3) Love-type surface waves (SH) have no vertical com
nent of motion and can be readily identified by component
tation.

A few general comments concerning the sensitivities and
quency response of seismometers are in order. Figure 4 is a
of the acceleration sensitivity of various planetary seismome
in units of the Earth’s gravitational acceleration, 980 cm/s2, ver-
sus the wave period of an input seismic signal. The respon
ground velocity or ground displacement is obtained by divid
acceleration by the angular frequencyω orω2 respectively. The
governing factor for any seismometer operation is the amb
background noise level. On the Earth, wind, cultural effects,
the cyclical tidally driven beating of the oceans on the contine
govern this background noise level. Seismic stations operat

un-terrestrial coastal locations or on islands are always noisier than
stations located farther inland from the coast. The curve marked
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FIG. 4. Comparison of the acceleration

Earth noise in Fig. 4 represents an “average” level of Earth no
and effectively sets the detection threshold or operational se
tivity of any Earth seismometer. The noise level on the Eart
Moon was far below that of any Earth site and frequently bel
the threshold sensitivity of the Apollo long-period seismome
(3 Å at 1 Hz or 1.2× 10−9 g). The leftmost line decreasing t
the right (a slope of+2 with respect toω) gives a reference in-
put ground amplitude of 0.1 nm or 1̊A. Shown for reference in
Fig. 3 are the peak-to-peak amplitude observed for the Ap
12 lunar module impact at a distance of 75.9 km (10 nm at 1
and typical amplitudes of moonquakes (<2 nm at 1 Hz).

Miniature seismometers for use on planetary missions are
available with sensitivities close to that achieved by the mu
heavier Apollo short- and long-period seismometers that w
emplaced on the Earth’s Moon. For example, the Mars Optim
seismometer, built but not flown on a Mars mission, weigh

3
5 g with a volume of 729 cm. A dual sensor was utilized: a
locity transducer for measurements in the period range f
sensitivity for various planetary seismometers.
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Hz)
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0.5 to 10 s and a ground displacement transducer in the
from 5 to 50 s. Because the transducers possessed a very
value for the generator constant the overall resolution was m
than 100 times better than that of theViking Marsseismometer a
corresponding wave periods (Lognonn´e et al. 1998). Electron-
ics for A/D conversion, health and temperature monitoring,
a modest amount of data memory required additional wei
comparable to that of the seismic sensor itself.

With only a single seismic station on Europa the determina
of the basic parameters of a natural event produced by an e
nal impact or a tectonic quake, including distance, time of orig
and source nature and strength will be difficult but not imp
sible. On the Earth’s Moon meteroid impacts and moonqua
were identified by examining seismic signature characteris
such as waveform matching, energy comparisons in wavefo
and coherence between signals. The time of occurrence o
rom
ural tectonic events at apogee and perigee was also a useful
criteria.
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The largea priori unknowns on Europa that will govern a
what detection sensitivity a seismometer can be operated ar
ambient seismic background noise and the expected rich so
of noise generated by the landed spacecraft itself. Sources m
be valve chatter, fuel venting, thermoelastic stress relief,
vibrations produced, for example, by movement of a came
Such noises hopefully are of short duration, infrequent, and
tinctive and occur at predictable times. Because these sig
will complicate routine listening they need to be recognized
that separation can be made from signals produced by even
natural origin. Distinct advantages to seismic monitoring co
be gained if the seismometer were part of a penetrator pac
positioned into the icy surface of Europa. It seems likely, ho
ever, that a Europan seismometer could be operated at near
sensitivities.
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