
Timedependent embeddings for Schwarzschildlike solutions to the
gravitational field equations
Christopher F. Chyba 
 
Citation: J. Math. Phys. 23, 1662 (1982); doi: 10.1063/1.525551 
View online: http://dx.doi.org/10.1063/1.525551 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v23/i9 
Published by the American Institute of Physics. 
 
Related Articles
Angular momentum at null infinity in five dimensions 
J. Math. Phys. 52, 032501 (2011) 
The Weitzenböck connection and time reparameterization in nonholonomic mechanics 
J. Math. Phys. 52, 012901 (2011) 
Singular sources in gravity and homotopy in the space of connections 
J. Math. Phys. 50, 122505 (2009) 
Scalar field theory in κ-Minkowski spacetime from twist 
J. Math. Phys. 50, 102304 (2009) 
Collinear central configurations in the n-body problem with general homogeneous potential 
J. Math. Phys. 50, 102901 (2009) 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

Downloaded 14 Apr 2012 to 128.112.70.5. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://jmp.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Christopher F. Chyba&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.525551?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v23/i9?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3559917?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3525798?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3250196?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3250148?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3205451?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


Time-dependent embeddings for Schwarzschild-like solutions to the 
gravitational field equations 

Cilristopher F. Chyba8
) 

Department of Physics, Swarthmore College, Swarthmore, Pennsylvania 19081 

(Received 21 September 1981; accepted for publication 14 May 1982) 

An explicit formula for embedding the Schwarzschild solution in a three-dimensional flat space 
with indefinite metric for arbitrary Kruskal timelike coordinate v is presented. The time 
development of the Schwarzschild solution can then be represented by a succession of spacelike 
surfaces, each corresponding to a different value of v. It is seen that the standard representation of 
the Schwarzschild metric, the Flamm paraboloid, is in fact the v = 0 special case of a similar time­
dependent embedding in a three-dimensional Euclidean space with positive definite metric. 
However, this embedding is inadequate in that it is not defined for most values of v. Thus, the 
embedding in a space with indefinite metric is to be preferred. The results for the Schwarzschild 
case are found to be readily extended to all metrics of a certain class, and a general embedding 
formula for arbitrary v results. Embeddings for the Schwarzschild, de Sitter, and Reissner­
Nordstrom metrics are then special cases of this general form. It is seen that all such solutions 
behave similarly as v gets large. This suggests an alternate interpretation of the oscillatory 
character of the Reissner-Nordstrom "wormhole." 

PACS numbers: 04.50. + h 

I. INTRODUCTION 

The Schwarzschild line element for a body of mass m 
(Ref. 1) is given by 

ds2 = - <P dt 2 + <P - 1 dr + r dfl 2 , (1) 

where 

<P = 1 - 2m/r (2) 

and 

dfl 2 = dO 2 + sin2 0 d<P 2 (3) 

is the metric of a unit sphere. Various methods have been 
employed to visualize the geometry of spacetime which 
arises from this solution. One aproach has been to embed the 
entire four-dimensional manifold in a flat space of higher 
dimension. Kasner2 has shown that, excluding the trivial 
pseudo-Euclidean case, no four-dimensional manifold satis­
fying R,.v = 0 can be embedded in a five-dimensional flat 
space. However, Kasner,3 and later FronsdaV have embed­
ded (1) in a six-dimensional space. The geometry of the 4-
manifold can then be pictured by taking subspaces of the 
higher-dimensional flat space. 

A simpler approach is that first used by Flamm,5 which 
takes advantage of the spherical symmetry of the Schwarzs­
child solution. Taking a constant-time slice of the 0 = 1T/2 
plane yields the two-dimensional line element 

ds2 = <p -I dr + r difJ 2 , (4) 

which is then embedded by equating it to the metric of a 
three-dimensional Euclidean space6 (positive definite met­
ric): 

ds2 = dz2 + dr + rdifJ 2 • (5) 

Solving for dz2 gives 

dz2 = (<P -I - 1) dr, (6) 

which upon integration yields the well-known two-sheeted 

8) Present address: Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge, Cambridge, England. 

Flamm paraboloid: 

z(r) = [8m(r- 2m)]lf2. (7) 

This equation corresponds to a surface with the topology of 
an Einstein-Rosen bridge/ or "wormhole," connecting two 
asymptotically flat universes. The "throat" of the bridge has 
a narrowest region in the z = 0 plane, where the two uni­
verses join along a circle of circumference 41Tm, or, taking 
into account the O-coordinate, along a sphere of surface area 
161Tm2. 

The Reissner-Nordstrom solution for a body of mass m 
and electric charge q is given by an expression similar to (1): 

ds2 = - <p dt 2 + <p -I dr + r dfl2 , (8) 

where 

(9) 

and dfl 2 is as before. An identical procedure to that outlined 
above, with m > Iql, gives the embedding formula8

: 

J[ l <P]1I2 
z(r) = T dr 

= dr, J [ 2mr - q2 ] 112 

(r-r+Hr-r_) 
(10) 

where r ± = m ± (m2 _ q2)lf2. 
Both these embeddings suffer from an inability to pro­

vide any geometrodynamic information, that is, neither can 
indicate how the curved space develops in time. Yet both the 
Schwarzschild and Reissner-Nordstrom solutions are 
known to exhibit quite dramatic time evolution. Kruskal 
diagrams9 indicate that the Schwarzschild "throat" pinches 
off in a finite time lO and the Reissner-Nordstrom "throat" 
oscillates between a minimum and maximum circumference 
of 21Tr _ and 21Tr +. 8 

In this paper, we develop a method for embedding any 
solution of the form 

ds2 = - <p dt 2 + <p -I dr + r dfl2, 
<p = <P(r) (11) 
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at an arbitrary, but explicit, Kruskal-like time coordinate v. 
That is, we are able to portray precisely, rather than merely 
qualitatively, embeddings which include the effectively 
time-dependent nature of certain black-hole type solutions. 
The time development of the solution can then be represent­
ed as a succession of spacelike surfaces, each surface corre­
sponding to a different value of v. These surfaces are only 
defined for all v if the flat embedding space is endowed with 
an indefinite metric. It will be seen that the standard 
Schwarzschild and Reissner-Nordstrom embeddings dis­
cussed above are actually special cases, at time v = 0, of the 
embeddings which result from a similar procedure in which 
a flat space with positive definite metric is used. Such an 
embedding is found to be undefined (becomes imaginary) for 
most values ofv. We suggest it is physically more appropri­
ate, in representing solutions to the field equations, to use 
embeddings that avoid such behavior. 

In Sec. II, we present two methods for obtaining such 
an embedding for the Schwarzschild metric (1). A succession 
of surfaces at different v is given, and the v = 0 surface is 
compared to the standard Flamm embedding. In Sec. III, 
with a slight extension of the general Kruskal-like transfor­
mations of Graves and Brill,8 we generalize one of the meth­
ods of Sec. II to any metric of the form (11). In Sec. IV, we 
consider several special cases of this general form, including 
the Schwarzschild and Reissner-Nordstrom metrics. It is 
seen that all solutions of the form (11) must exhibit similar 
behavior as v goes to ± 00. Consideration of the dissimilar 
time evolutions of the Schwarzschild and Reissner-Nord­
strom solutions, in the light of this result, suggests an alter­
nate view ofthe oscillatory behavior of the Reissner-Nord­
strom "wormhole." Rather than crediting the pulsation in 
time to the separate and opposing actions of gravitational 
pull and Maxwell pressure,8 it is simpler to take the view that 
the portrayal of the full manifold which results from solving 
the equations RJw = - 81TTl-'v for a spherical mass endowed 
with charge requires a timelike coordinate v that is itself 
oscillatory. 

II. EMBEDDING THE SCHWARZSCHILD METRIC AT 
ARBITRARY v 

The well-known Kruskal transformation9 giving the 
maximal analytic extension of the Schwarzschild solution is 

{U} = (1 _ r12m)1/2 exp(rI4m) {Sinh(t 14m)} (12) 
v cosh(t 14m) 

for r < 2m, and 

{U} = [(rI2m) _ 1] 1/2 exp(rI4m) {C?Sh(t 14m)} (13) 
v smh(tI4m) 

for r> 2m. The line element, now free of the coordinate 
("pseudo") singularity at r = 2m, becomes 

ds2 =p( - dv2 + du2) + r dIJ 2, (14) 

where 

j2 = (32m3Ir) exp( - rI2m), (15) 

and dIJ 2 is as before. 
Our goal is to embed the () = 1T /2 plane of ( 1 ), 

ds2 = - <Pdt 2 + <P -I dr + rdtfJ2, (16) 
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into a flat space with metric given by 

ds'- = - dr + d~ + r dtfJ 2 • (17) 

The choice of this particular metric will be discussed shortly. 
We eliminate dt 2 from (16) in such a way that the time depen­
dence of the metric remains explicit. This is done by solving 
Eqs. (12) and (13) for t as a function of v = const, differentiat­
ing, and squaring the result. II We obtain 

dt 2 = v2(rI2m) dr 
[v2 _ (1 _ rI2m)exp(rI2m)] [1 _ rl2m] 2 (18) 

for r both greater and less than 2m. Equation (16) then be­
comes 

ds2 = [ (rI2m)exp(rI2m) ] dr + r dtfJ 2. (19) 
v2 - (1 - rI2m)exp(rI2m) 

Equating Eqs. (19) and (17) gives the embedding formula: 

dz = [ (rI2m)exp(rI2m) + 1] 112 dr. 
v2 _ (1 _ rI2m)exp(rI2m) (20) 

The same equation, with a useful intermediate result, is 
more easily obtained by setting v = const. in Eq. (14). Equa­
tions (12) and (13) give 

U
2 - v2 = - (1 - rI2m)exp(rI2m) (21) 

or 

U = [v2 
- (1 - rI2m)exp(rI2m)] 1/2 (22) 

for all r. We therefore have the requirement that 

v2 exp( - rI2m»(1 - rl2m) . (23) 

This inequality, which is independent of the signature of the 
space in which we embed our metric, is a particulary com­
pact representation of the time evolution of the Schwarzs­
child solution, as shown in Fig. 1. 

Differentiating (22) with v = const, we obtain 

du = (r/8m2)exp(rI2m)[v2 - (1 - rl2m) 
xexp(rI2m)]-1/2 dr. (24) 

·:t 
.~ 
05~ 
I-~~ 

0-1.-- -, \-
o 0.5 

r 

,--
15 

,--
2 

--, 
2.5 

FIG. 1. The inequality v2e - '> 1 - r (we have set 2m = 1), a necessary con­
dition for the Schwarzschild solution in Kruskal coordinates to be embed­
ded for arbitrary v, is a particularly simple representation of the solution's 
development in time. The embedding is defined only when v2e - '(solid lines) 
is greater than 1 - r (dashed line). The number attached to each curve indi­
cates the corresponding value of Ivl. At Ivl = 0, the "throat" has minimum 
radius 1; as Ivl increases, increasingly smaller values of r are allowed (the 
"throat" contracts). Finally, at Ivl = ± 1, r can equal zero (the "throat" 
pinches oft). 
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Substituting this expression into (14) and equating to (17) 
yields the embedding formula (20) immediately. 

Had we used the positive definite metric (5) for our flat 
embedding space, rather than the indefinite metric (17), we 
would have obtained 

dz= [ (r/2m)exp(r/2m) _1]112 dr (25) 
v2 - (1 - r/2m)exp(r/2m) 

as our embedding formula. At the Kruskal time v = 0, this 
reduces to 

dz = [ (r/2m) _ 1] 112 dr = (f/> -I _ 1)1/2 dr, (26) 
(r/2m) -1 

which is just the Flamm embedding (7). We therefore see that 
the Flamm paraboloid is a special case of the time-dependent 
embedding (25). However, it is clear that the square root in 
this equation becomes imaginary for many realizable values 
of rand v. First write Eq. (25) in the form 

dz= dr. [ 
exp(r/2m) - v2 

] 112 

v2 - (1 - r/2m)exp(r/2m) 
(27) 

Equation (23) guarantees that the denominator of this 
expression is positive. Equation (27) will therefore be unde­
fined (have imaginary square root) whenever 

v2 > exp(r/2m) . (28) 

Such a result is unsatisfactory; we expect a physically accep­
table representation of our curved space to be well defined 
for all-time v. This suggests that (20) is a more appropriate 
choice than (25), which in turn indicates that the v = 0 spe­
cial case of (20) is a more appropriate embedding than the 
Flamm paraboloid. 

This result is not surprising. We should expect the 
Schwarzschild line element to require a space of indefinite 
metric to be embedded for all v. In order to embed an n­
dimensional surface given by 

n-I 

ds2 = I g!'v dx!, dxv (29) 
U,v=o 

in an m-dimensional flat space of arbitrary signature, with 
metric 

m-I 

ds2 = I a j dJ; , (30) 
j=O 

where/; =/;(xj'and a j = ± 1, we must have 
n-I m-I 

ds2 = I g!'v dx!, dxv = I a j df; 
u.v=o ;=0 

m - I n - I a/; a/; 
= '" '" a· -' -' dx dx 4", 4- I f..t. v' 

j=O u,V=O ax!, axv 
(31) 

whence, 

m-I a/; a/; 
g!'v = I a j --. (32) 

j=O ax!, axv 

Symmetry of the metric tensor g!'v in this equation gives 
!n(n + 1) first-order partial differential equations in the m 
unknowns/;(x). If there are no inconsistencies in the equa­
tions, we have the standard result that any n-dimensional 
manifold can always be embedded in a flat space of dimen­
sionm;;;.!n(n + 1).12 In the case of the Schwarzschild metric, 
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we have goo = - 1IgII and the equations are not consistent. 
Equation (32) yields 

m-I a/; a/; 
goo= -f/>= I a j -' -', 

j=O aXo axo 
(33) 

and 

_I m-I a/; a/; 
gil = f/> = I a j -a. -a. ' 

j=O XI XI 
(34) 

which give 

m - I (a/; )2 [ m - I (a/; )2] -1 I a j - = - I a j -

j=O axo j=O aX I 

(35) 

However, given a positive definite metric (aj = 1 for all i), 

m - 1 ( a/;)2 m - 1 ( a/; )2 I a j -' = I -' ;;;.0 
j=O axv j=O axv 

(36) 

for any v. Equation (35) therefore shows the impossibility of 
embedding the entire Schwarzschild manifold in a positive 
definite Euclidean space. The case v = 0 is, of course, an 
exception to this result. If v = 0, then r> 2m, and (13) shows 
that t = 0 identically for any allowable r. The Schwarzschild 
metric is then no longer indefinite (since dt = 0), and for this 
special case the entire manifold can thus be embedded. \3 

To show the time evolution of the Schwarzschild solu­
tion using embedding diagrams, we choose different con­
stant values of v in (20). For a given v, the equation can then 
be integrated numerically to give a spacelike two-dimension­
al surface. It is clear from (20) that the time evolution ofthe 
manifold is symmetric in v about the value v = 0, and that, as 
v goes to ± 00, z(r) = r. Embeddings for illustrative values of 
v are shown in Figs. 2 and 3. Of particular interest is the 
v = 0 embedding, corresponding to the maximum size of the 
Schwarzschild "throat." At v::::: 0, (20) can be integrated ex­
actly to give 

4 

3 

N 2 

z= V2 f[ r-m ]1I2 dr =[2(r_m)(r_2m)]1/2 
r-2m 

V2 [(r - 2m)1/2 + (r _ m)1/2] 
+--mlog . 

2 (r - m)1/2 - (r - 2m)l12 

.95 

.85 

o 

~- --,--------, 
0.5 1 1.5 2 

r 

(37) 

FIG. 2. Equation (20) gives an embedding of the Schwarzschild solution for 
any Kruskal-time v. Substituting into (20) a constant value of lvi, the equa­
tion can be numerically integrated to givez = z(r). Here we show the embed­
ding corresponding to Ivl = 0 (maximum size of "throat"), Ivl = 0.85, 0.95 
("throat" contracts), and Ivl = 1 ("throat" pinches oft). To obtain the entire 
two-sheeted embeddings, the curves must be rotated about the z axis, and 
reflected across the z = 0 plane. We have set 2m = 1. 
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4 

3 

r 

tOl 

t5 

I 

2 

FIG. 3. Identical to Fig. 2, for the cases Ivl = I, 1.01, 1.5,5. The Schwarzs­
child "throat" approaches the line z = r as Ivl grows large. 

This new v = 0 embedding is compared to the standard 
Flamm embedding in Fig. 4. It is seen that the behavior of 
the new embedding is qualitatively similar to that of Flamm: 
the "throat" has a narrowest radius of f = 2m in the z = 0 
plane, and the surface is asymptotically flat at large f. 

III. THE GENERAL CASE 

Graves and Bri118 have given a general Kruskal-like 
transformation to remove pseudosingularities from metrics 
of the form (11), of which the Schwarzschild, de Sitter, and 
Reissner-Nordstrom metrics are special cases. It is assumed 
that rfJ If) has zeroes or poles Ithe pseudosingularities) which 
are to be eliminated by transforming f and t to new coordi­
nates U(f,t) and V(f,t ), in terms of which light continues to 
travel along lines of slope ± 1. In such coordinates, the met­
ric (11) takes the form 

dr = f2(U,v)(du2 - dv2) + r(u,v) dfJ 2 , (38) 

where 

P(u,v) = 41 (f) exp( - 2rr*)/4A 2y2 (39) 

and 

6 

4 

N 

2 

o L-~-,-- ----,---------, 
o 234 

r 

FIG. 4. The well-known Flamm paraboloid (7) is the Ivl = 0 special case of 
an arbitrary v embedding into a space with positive definite metric (25), and 
is given by the solid line. The Ivl = 0 special case of an embedding in a space 
of indefinite metric, (37), behaves similarly (dashed line); its minimum radi­
us is I, and it is asymptotically ftat for large r. Both curves are to be rotated 
about the z axis and reftected through the z = 0 plane to give the full two­
dimensional embedding. 
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r* = J dfl<P (f) . (40) 

A is an arbitrary scale factor and y is a constant chosen so 
that (39) is regular at the pseudosingularity lifmore than one 
such singularity exists, several coordinate patches may be 
required). The coordinate transformation itself is given as, 

{u(r,t)} = 2A ex I r*) {cOSh(rt )} 
v(r,t ) p y sinh(rt) 

with the inverse transformation given implicitly by 

u2 - v2 = 4A 2exp(2yr*) , 

t = (1I2y)tanh- I [2uv/(u2 
- v2

)]. 

Equation (42) gives 

u = [v2 + 4A 2exp(2yr*W/2 . 

(41) 

(42) 

(43) 

(44) 

Differentiating this equation and substituting into (38), with 
v = const., yields 

ds2 = 4A 241 -1(r)exp(2yr*) 

X [v2 + 4A 2exp(2rr*)]-ldr + r dfJ 2. (45) 

Equating (45) and (17) then gives 

dz= + 1 dr. [ 
4A 2 exp(2yr*) ] 1/2 

41 (rHv2 + 4A 2 exp(2rr*)] 
(46) 

We therefore have a general procedure for embedding any 
metric of the form (11) at arbitrary time v. Finally, we note 
that (44) provides the general requirement 

v2
;) _ 4A 2 exp(2yr*) . (47) 

IV. APPLICATIONS 

For the Schwarzschild metric, Graves and Brill put 

y = 114m, A = !, 41 = (1 - 2m/r), 

r* = r+ 2m log(r- 2m). (48) 

These values give the transformation equations 

{u} = ( _ 2 )1/2 (/4) {COSh(t 14m)} r m exp r m . h( I ) . v smt4m 
(49) 

Clearly, however, these equations are not valid when r < 2m. 
We therefore choose r* = r + 2m log\r - 2m\ in general, 
and, in addition to (49), take 

{u} = 2A ex ( r*) {Sinh(rt )} 
v p y cosh(rt) 

(50) 

for the Schwarzschild metric in the case r < 2m. The inverse 
transformation (42)-and hence our embedding formula­
now remains unique regardless of the value of r. Finally, to 
bring our results completely in line with the transformation 
ofKruskal, we take A = 1I(8m)1/2. Substitution of these val­
ues into (42) reveals that the Schwarzschild embedding of 
Sec. II is a special case of the general procedure presented in 
Sec. III. 

As a second example, consider the metric of the de Sit­
ter universe in the static frame. 14 We have • 

(51) 

where 0 < r < R. We restrict our discussion of this metric to 
the inequality (47), which, with 
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R (R + r) r* =-log -- ; 
2 R-r 

1 
Y = --·A = 1 R' , (52) 

becomes 

v2(R + r);;.4(r - R). (53) 

This inequality indicates that r cannot become infinite unless 
Ivl ;;'2, in agreement with the usual result. 15 

Finally, we consider the Reissner-Nordstrom metric 
(8), restricting ourselves to the case in which the mass ex­
ceeds the value associated by general relativity with the 
charge 

(54) 

where both are in units of centimeters. While such a restric­
tion avoids so-called "naked" singularities, 16 the physical 
significance of this metric remains unclear. Misner and 
Wheeler17 have shown the condition (54) to be incompatible 
with a nonclassical description of charge and mass. In addi­
tion, it has recently been shown that a gravitational collapse 
to the Reissner-Nordstrom singularity is impossible for a 
broad class of boundary-surface histories. IS 

With the condition (54), the metric has two pseudosin­
gularities at 

r ± = m ± (mZ - q2)1/2. (55) 

Two coordinate patches (i,)) are thus required in the neigh­
borhoods of r + and r _. Graves and Brill give 

r*=r+( r+ )IOg(r-r+) 
r+ -r_ 

_( r_ )IOg(r-r_) (56) 
r+ - r 

and 

(57) 

which yield the transformation 

{
Ui } a. {COShYit} =2A(r-ri)I/Z(r-rj)Jexp(Yir) . h ' 
Vi sm Yi t 

(58) 

where 

a j = - ~(r/r;)2 , (59) 

with (i,)) = ( +, - ) or ( - , + ). As in the Schwarzschild 
case, however, these equations need to be generalized for 
values of r other than r> r + > r _. Our criterion is that the 
inverse transformation (42) remains unique for each coordi­
nate patch. Thus, our transformations becomes 

r* = r + ( r+ ) loglr - r + I 
r+ - r _ 

_ ( r_ ) loglr _ r _I (60) 
r+ -r 

and 

{
U

i
} IllizI laj ( )/3 Vi = 2A r - ri r - rj exp Yi r i' 

where a j is as before and 

1666 

_ {COSh Yi t} /3-
I sinh Yi t 

or {Sinh Yi t} , 
cosh Yi t 
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(61) 

(62) 

depending on the sign of Ir - r i Ilr - rj I
zaj 

relative to 
2a· 

(r - ri)(r - rj ) J. 
We can substitute these values into (46) to obtain an 

embedding for the Reissner-Nordstrom solution at arbi­
trary v. In particular, the V = 0 embedding 

f [ 1 + <P (r) ] 1/2 z(r) = dr 
<P(r) 

(63) 

differs from the Flamm-like embedding (10), which results 
from a flat space with positive definite metric. 

Rather than utilizing two coordinate patches, we could, 
at least formally, follow a similar embedding procedure in 
the extended Reissner-Nordstrom manifold. Here the met­
ric (8) may be written 19 in the form 

dsz = FZ( - dt/? + ds 2
) + r dfl 2, (64) 

where 

F = F(t/J,s); r = rit/J,s) (65) 

and dfl is the usual spherical surface element. However, the 
complicated nature of the transformations (65) indicates that 
it is in practice simpler to use the series of coordinate patches 
(i,}) given by Graves and Brill. 

Finally, we wish to consider the time development of 
the manifold. Consider the general embedding equation (46), 
of which that of the Reissner-Nordstrom metric is a special 
case. It is clear from (46) that, as we let tile absolute value ofv 
in our constant time embeddings grow large, the equation 
goes to 

z(r) = f dr = r , (66) 

which is pinched off at r = 0 in the z = 0 plane. In particular, 
this same behavior holds for the Reissner-Nordstrom em­
bedding. Yet it is known that the radius of the "throat" for 
this metric must pulsate periodically in time. This pulsation 
has been credited to a "cushioning" by Maxwell pressure of 
the electric field through the "throat."g From a considera­
tion of the embedding formula, however, in which the effect 
of the presence of electric charge is taken into account by the 
values assigned r* and Y, it seems the "throat" must pinch off 
as in the Schwarzschild case. This does not take place be­
cause Ivl never goes to infinity; for an observer on the 
"throat" (u = 0 in the first patch), V reaches a maximum 
value of 

VZ = 4A 2 exp(2y + rc)(r + - rc)(rc - r _)2a , (67) 

where 

and 

r + > rc > r _ . (69) 

At this value of r = rc , the observer crosses into the second 
patch. Upon return to a patch identical to the first, the ob­
server moves only between two finite values of v, again de­
parting the patch at a time v given by (67). That is, Ivl never 
approaches infinity, but rather, oscillates between finite val­
ues. We adopt the view that the Reissner-Nordstrom 
"throat" pulsates because the timelike coordinate needed to 
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describe both patches of the manifold which results from a 
spherically symmetric mass and charge distribution must 
itself be oscillatory. 
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